HYDRO-PULSE PERFORATION OF OIL AND GAS WELLS WITH A POLYMER SOLUTION JET
Abstract
This paper analyzes the existing intensification method: hydro-abrasive jetting (or hydro-sandblasting perforation). Despite its effectiveness in establishing a reliable hydrodynamic connection between the formation and the wellbore, this method has significant drawbacks. Chief among these are the intense hydro-abrasive wear of pumping equipment and fittings, leading to a decline in the quality of perforation channels due to nozzle erosion, as well as the high resource and energy intensity of the process. As a promising and more advanced alternative, the authors propose the use of a high-velocity polymer solution jet (polyethylene oxide). The key innovative idea of the work is the application of a pulsed, rather than a steady (continuous), mode for delivering the water-polymer jet. The main hypothesis of the research posits that this approach, owing to the unique rheophysical properties of polymers, can significantly enhance the destructive capability of the jet. Theoretical justification and a series of experiments have fully confirmed this hypothesis. Studies of the behavior of polymer solutions under oscillatory flow conditions, which simulate the perforator's operation, revealed the existence of a critical pulsation frequency. It was established that maximum destructive efficiency is achieved when the pulse frequency corresponds to the maximum of the dissipative function. In this mode, the largest portion of the flow's energy is irreversibly dissipated and converted into destructive work. Experiments involving the perforation of a target model (steel, concrete, and rock formation) clearly demonstrated that the pulsed jet creates significantly deeper channels than a steady jet at identical initial pressures. Based on the results obtained, a conceptual solution and design for a new device–the hydro-pulse perforator–were developed. Its novelty lies in the use of a rotating rotor with V-shaped grooves, driven by an integrated hydraulic turbine. As it rotates, the rotor mechanically interrupts the flow of the working fluid to the nozzles, thereby generating powerful hydrodynamic pulses. An important design feature is the capability for axial displacement of the rotor, which allows for the precise adjustment of the pulse shape, duration, and frequency to achieve maximum destructive effect depending on the properties of the rock formation. Thus, the work demonstrates that the transition to a pulsed mode for water-polymer perforation is scientifically justified and highly effective. The proposed hydro-pulse perforator represents an innovative technical solution that meets the 'inventive step' criterion and paves the way for creating an energy-efficient and more productive technology for developing oil and gas formations.
References
2. Бойко В. С. Підземний ремонт свердловин : підручник : у 4 ч. Івано-Франківськ : ІФНТУНГ, 2009. Ч. 3. 809 с.
3. Pogrebnyak V. G., Naumchik N. V. Hydrodynamic activity of polymers in high-velocity flows. Journal of Engineering Physics and Thermophysics. 1995. Vol. 68, no. 1. P. 138–140.
4. Погребняк В. Г., Погребняк А. В. Технології високоефективного гідрорізання. Актуальні напрями розвитку технічного та виробничого потенціалу національної економіки: монографія за ред. В. О. Пінчук, Г. С. Прокудіна. Дніпро : Пороги, 2021. С. 84–99.
5. Pogrebnyal V. G., Chudyk I. I., Pogrebnyak A. V., Perkun I. V. Perforation of oil and gas wells by a high-velocity jet of polymer solution. Nafta-Gaz. 2022. No. 78(1). P. 3–12. DOI:10.18668/NG.2022.01.01
6. Pogrebnyak V. G., Chudyk I. I., Pogrebnyak A. V., Perkun I.V. High-efficiency Casing Perforation Oil and Gas Wells. SOCAR Proceedings. 2021. No.2. P. 112–120. DOI: 10.5510/OGP2021SI200578
7. Perkun I., Pogrebnyak V., Szymanskyi V. Perforation of casing strings in oil and gas weiis with a polymer solution jet: scientific and practical aspects. Trends in petroleum engineering. 2025. Vol. 5, no. 1. P. 1–7. DOI: 10.53902/TPE.2025.05.00045.
8. Спосіб гідроструминної перфорації свердловин: пат. на корисну модель № 150245, Україна. МПК (2022.01) Е21В43/00 Е21В 43/14 (2006.01) / Погребняк В. Г., Перкун І. В., Погребняк А. В., Шиманський В. Я. № u 2021 04406, заявл. 29.07.2021, опубл. 19.01.2022. Бюл. № 3.
9. Погребняк В. Г., Волошин В. С. Екологічна технологія створення водозахисних екранів: монографія. Донецьк: Ноулидж, 2010. 482 с. URL: https://scholar.google.com/citations?user=rwvMpTQAAAAJ&hl=en&oi=sra
10. Pogrebnyak V. G., Naumchuk N. V., Maksyutenko S. N. Use of heat carriers with hydrodynamically active additives. Izvestiya Vysshikh Uchebnykh Zavedenii, Energetika. 1982. No. 5. P. 109–111.
11. Pogrebnyak V. G., Perkun I. V., Pogrebnyak A. V. Displacement of Oil from Porous Bed by the Oscillating Flow of Polymer Solution. American Journal of Science, Engineering and Technology. 2017. Vol. 2, no. 1. P. 53–57.
12. Ferry J. D. Viscoelastic Properties of Polymers. New York : John Wiley & Sons, 1961. 482 p.
13. Middleman S. The Flow of High Polymers: Continuum and Molecular Rheology. New York : Interscience Publishers, 1968. 245 p.
14. Vinogradov G. V., Malkin A. Ya. Rheology of Polymers. M.: Mir Publishers; Berlin: Springer-Verlag, 1980. 468 p.
15. Kleiman R. N. Analysis of the oscillating–cup viscometer for the measurement of viscoelastic properties. Physical Review A. 1987. Vol. 35, no. 1. P. 261–275.
16. Ferry J. D. Relaxations in Polymer Solutions, Liquids, and Gels // Physical Acoustics: Principles and Methods. ed. by W. P. Mason. New York; London: Academic Press. 1965. Vol. II, part B. P. 1–115.
17. Pogrebnyak A., Pogrebnyak V. The Elastic Deformations and Anomalously High Cutting Ability of a Polymer Solution Jet. Scientific Journal of the Ternopil National Technical University. 2017. No. 1 (85). P. 89–94.
18. Elyashevich G. K. Thermodynamics and kinetics of orientational crystallization of flexible chain polymers. Advances in Polymer Science. 1982. Vol. 43. P. 205–245.
19. Гідроімпульсний перфоратор : пат. 152383 Україна : МПК Е21В 43/114 / Погребняк В. Г., Перкун І. В., Погребняк А. В., Шиманський В. Я. № u202202267 ; заявл. 30.06.2022 ; опубл. 18.01.2023, Бюл. № 3.
20. Pogrebnyak V. G., Chudyk I. I. Solutions of Polymers in the Oil and Gas Technologies. Prospects for developing resource-saving technologies in mineral mining and processing : multi-authored monograph. Petrosani : UNIVERSITAS Publishing, 2022. P. 110–294. DOI: 10.31713/m1106.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN 



