ENHANCING OCCUPATIONAL SAFETY IN HYDROJET WATER-POLYMER PERFORATION OF WELLS
Abstract
The article focuses on the relevance of ensuring safe working conditions during hydrojet water-polymer perforation of wells – a modern innovative non-explosive technology that is actively implemented in oil and gas extraction and production intensification processes. This approach significantly reduces the risks associated with the use of traditional explosive methods; however, it introduces new safety requirements, particularly due to the application of high pressures. The analysis identifies the main sources of danger associated with this technology: exceeding the permissible pressure level, the likelihood of hydraulic shock, and operator errors that may lead to emergency situations. To reduce the impact of the human factor and minimize risks, the introduction of automated control systems for the technological process is proposed, through the creation of intelligent sensor systems for high-pressure monitoring. For this purpose, a magnetic La0.6Sr0.3Mn1.1O3 (LSMO) nanopowder has been synthesized by atomization hydrolysis and compacted under different pressures up to 1600 MPa. Their phase composition, crystal structure, morphology, magnetic, magneto-resonance, transport, magnetoresistance, and baroresistance properties have been comprehensively studied. As the pressure increases to 1600 MPa, the filling factor in the compacts increases, decreasing the average distance between particles. In the room temperature range, the LSMO nanopowder is in a ferromagnetic state with a Curie temperature 367 oK and does not depend on the compacting pressure. With increasing pressures, a monotonic decrease in resistivity is due to reducing the distance between particles. Giant baroresistance effect with the establishment of the following important applied properties has been found: baroresistance effect is not limited by the Curie temperature and is observed both in the ferromagnetic and paramagnetic states; the baroresistance effect under constant pressure slightly depends on the temperature in a wide range from – 193 to + 127 ℃; in the pressure range from 0 to 400 MPa, the baroresistance effect has the highest sensitivity, which is 0.1%/MPa. The conclusion is made regarding the feasibility of implementing LSMO in safe control systems for hydrojet water-polymer perforation of oil and gas wells.
References
2. Pogrebnyak V. G., Chudyk I. I., Pogrebnyak A. V., Perkun I. V. High-efficiency Casing Perforation Oil and Gas Wells. SOCAR Proceedings. 2021. № 2, P. 112–120. doi: 10.5510/OGP2021SI200578.
3. Liu H., Wang F., Wang Y., Gao Y., Cheng J. Oil well perforation technology: Status and prospects. Petroleum Exploration and Development. 2014. № 41 (6), P. 798–804. doi: 10.1016/S1876-3804(14)60096-3.
4. Grove B., Werner A., Han C. Explosion-induced damage to oilwell perforating gun carriers. WIT Transactions on the Built Environment. 2006. № 87, P. 165–176. doi: 10.2495/SU060171.
5. Pashchenko A. V., Pashchenko V. P., Prokopenko V. K., Pogrebnyak V. G. [et al.]. Imperfection of the clustered perovskite structure, phase transitions, and magnetoresistive properties of ceramic La 0.6Sr 0.2Mn 1.2-xNi xO 3 ± δ (x = 0-0.3). Physics of the Solid State. 2012. № 54 (4), P. 767–777. doi: 10.1134/S106378341204021X.
6. Wei Z., Pashchenko A. V., Liedienov N. A., Pogrebnyak V. G. [et al.]. Multifunctionality of lanthanum- strontium manganite nanopowder. Physical Chemistry Chemical Physics. 2020. № 22(21), P. 11817–11828. doi: 10.1039/d0cp01426e.
7. Pashchenko A. V., Liedienov N. A., Fesych I. V., Pogrebnyak V. G. [et al.]. Smart magnetic nanopowder based on the manganite perovskite for local hyperthermia. RSC Advances. 2020. № 10(51), P. 30907–30916. doi: 10.1039/d0ra06779b.
8. Pashchenko A. V., Liedienov N. A., Li Q., Pogrebnyak V.G. [et al.]. Control of dielectric properties in bismuth ferrite multiferroic by compacting pressure. Materials Chemistry and Physics. 2021. № 258, art. 123925. doi: 10.1016/j.matchemphys.2020. 123925
9. Liedienov N. A., Fesych I. V., Prokopenko V. K., Pashchenko A. V., Pogrebnyak V.G. [et al.]. Giant baroresistance effect in lanthanum-strontium manganite nanopowder compacts. Journal of Alloys and Compounds. 2023. № 938, art. 168591. doi: 10.1016/j.jallcom.2022.168591.
10. Xia W., Pei Z., Leng K., Zhu X. Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures. Nanoscale Research Letters. 2020. № 15 (1), art. 9. doi: 10.1186/s11671-019-3243-0.
11. Tokura Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 2006. № 69 (3), P. 797–851.
12. Liedienov N.A., Kalita V.M., Pashchenko A.V., Dzhezherya Yu.I. [et al.]. Critical Phenomena of Magnetization, Magnetocaloric Effect, and Superparamagnetism in Nanoparticles of Non-Stoichiometric Manganite. J. Alloys Compd. 2020. № 836, art. 155440. doi: 10.1016/j.jallcom.2020.155440.
13. Haghiri-Gosnet A.-M., Renard J.-P. CMR manganites: physics, thin films and devices. J. Phys. D: Appl. Phys. 2003. № 36 (8), P. R127 – R150. doi: 10.1088/0022-3727/36/8/201.
14. Liedienov N.A., Wei Ziyu, Kalita V. M., Pashchenko A.V. [et al.]. Spin-dependent magnetism and superparamagnetic contribution to the magnetocaloric effect of non-stoichiometric manganite nanoparticles. Appl. Mater. Today. 2022. № 26, art. 101340. doi: 10.1016/j.apt.2021.101340.
15. Kundys B., Szymczak H. Magnetostriction in thin films of manganites and cobaltites. Phys. Stat, Sol. (a). 2004. № 201(15), P. 3247–3251. doi: 10.1002/pssa.200405427.
16. Dörr K. Ferromagnetic manganites: spin-polarized conduction versus competing interactions. J. Phys. D: Appl. Phys. 2006. № 39(7), P. R125 – R150. doi: 10.1088/0022-3727/39/7/R01.
17. Pashchenko A. V., Pashchenko V. P., Prokopenko V. K., Revenko Yu. F. [et al.]. Influence of structure defects on functional properties of magnetoresistance (Nd0.7Sr0.3)1−xMn1+xO3 ceramics. Acta Materialia. 2014. № 70, P. 218–227. doi: 10.1016/j.actamat.2014.02.014.
18. Dyakonov V., Ślawska-Waniewska A., Nedelko N., Zubov E. [et al.]. Magnetic, resonance and transport properties of nanopowder of La 0.7Sr0.3MnO3 manganites. Journal of Magnetism and Magnetic Materials. 2010. № 322 (20), P. 3072–3079. doi: 10.1016/j.jmmm.2010.05.032.
19. Mikhaylov V. I., Zubov E. E., Pashchenko A. V., Varyukhin V. N. (1999). Thermally activated conductivity and current-voltage characteristic of dielectric phase in granular metals. J. Exp. Theor. Phys., 88 (4), 819–825. doi: 10.1134/1.558861.
20. Dyakonov V., Ślawska-Waniewska A., Nedelko N., Zubov E. [et al.]. Magnetic, resonance and transport properties of nanopowder of La 0.7Sr0.3MnO3 manganites. Journal of Magnetism and Magnetic Materials. 2010) № 22 (20), P. 3072–3079. doi: 10.1016/j.jmmm.2010.05.032.
21. Savosta M. M., Kamenev V. I., Borodin V. A., Novák P., [et al.]. Ferromagnetic insulating state in manganites: 55Mn NMR study. Phys. Rev. B. 2003. № 67 (9), art. 094403.
22. Blaak R. Optimal packing of polydisperse hard-sphere fluids. II. J. Chem. Phys. 2000. № 112 (20), P. 9041–9045. doi:10.1063/1.481515.
23. Shklovskii B.I., Efros A.L. Tunnel transparency of disordered systems in a magnetic field. JETPh. 1983. № 57 ( 5), P. 470–476.
24. Morup S., Hansen M.F., Frandsen C. Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 2010. № 1, P. 182–190. doi: 10.3762/bjnano.1.22.
25. Kawasaki Y., Minami T., Kishimoto Y., Ohno T. [et al.]. Phase Separation in A-Site-Ordered Perovskite Manganite LaBaMn2O6 Probed by 139La and 55Mn NMR. Physical Review Letters. 2006. № 96(3), art. 037202. doi: 10.1103/PhysRevLett.96.037202.
26. Papavassiliou G., Belesi M., Fardis M., Pissas M. [et. al.]. Orbital domain state and finite size scaling in ferromagnetic insulating manganites. Physical Review Letters.2003. № 91(14), art. 147205. doi: 10.1103/PhysRevLett.91.147205.
27. Savosta M. M., Novák P., Jirák Z., Hejtmánek J., Maryško M. Temperature Dependence of 55Mn NMR in Pr0.7Ca0.15Sr0.15MnO3 and Pr0.7Ba0.3MnO3 Ferromagnetic Manganites. Physical Review Letters.1997. № 79 (21), P. 4278 – 4281. doi: 10.1103/PhysRevLett.79.4278.
28. Hueso L. E., Rivas J., Rivadulla F., Lopez-Quintela M. A. Tuning of colossal magnetoresistance via grain size change in La0.67Ca0.33MnO3. Journal of Magnetism and Magnetic Materials. 1999. № 86(7), P. 3881–3884. doi: 10.1063/1.371303.
29. Pashchenko А.V., Pashchenko V.P., Prokopenko V.K., Revenko Yu.F., [et. al.]. The role of structural and magnetic inhomogeneities in the formation of magneto-transport properties of the La0.6-xSmxSr0.3Mn1.1O3-δ ceramics. Journal of Magnetism and Magnetic Materials. 2016. № 416, P. 457–465. doi: 10.1016/j.jmmm.2016.05.010.
30. Coey J. M. D., Viret M., Molnar S. Mixed-valence manganites. Adv. Phys. 1999. № 48 (2), P. 167–293. doi: 10.1080/000187399243455.