CLOUD SERVICES IN DISTRIBUTED NETWORK INFRASTRUCTURE

Keywords: cloud services, distributed networks, automation, scaling, Prometheus, Grafana, AWS Auto Scaling

Abstract

The article considers approaches to implementing cloud services into distributed network infrastructure. An overview of modern platforms (AWS, Microsoft Azure, Google Cloud Platform) and monitoring systems (Prometheus, Grafana) is provided, automation methods and resource scaling algorithms based on events and metrics are described. The main focus is on the implementation and verification of models that ensure dynamic scaling, fault tolerance, and cost optimization. The purpose of the work is to analyze leading cloud platforms, implement and verify a model for managing distributed network infrastructure using cloud services, which provides: centralized monitoring using Prometheus and Grafana; adaptive scaling of resources based on metrics and security of data transmission between local nodes and cloud services. The object of research is the process of integrating cloud technologies into the infrastructure of distributed networks. The subject is software, tools, methods, models for monitoring and managing distributed networks. The authors developed an infrastructure management model using integration with a public cloud. Several load scenarios were simulated and private, public, and hybrid integration models were compared in terms of performance, fault tolerance, and costs. Algorithms for automatic scaling based on Prometheus Alertmanager and AWS Auto Scaling are presented, and a set of practical recommendations for the secure integration of cloud services into distributed networks is proposed. The management system was modeled with the integration of Prometheus and Grafana tools. The results confirm that the integration of cloud solutions and Software-Defined Networking (SDN) methods allows for a significant increase in the performance and resilience of the network infrastructure, which is critical for modern scalable solutions. The results obtained can be used when modernizing corporate network infrastructure to increase its reliability and efficiency. The results showed that as the number of users increases, latency increases, but the system maintains functionality even under peak conditions.

References

1. Рудьковський О. Р., Киричек Г. Г. Програмний комплекс з підтримки розподіленої взаємодії мережевих пристроїв та додатків. Вчені записки ТНУ ім. В.І. Вернадського. Серія «Технічні науки». 2021. Вип. 32(71). № 2. С. 229–234. DOI https://doi.org/10.32838/2663-5941/2021.2-1/36.
2. Zhang F., Cao J., Li K., Khan S. U., Hwang K. Multi-objective scheduling of many tasks in cloud platforms. Future generation computer systems, 2014, 37: 309–320. DOI https://doi.org/10.1016/j.future.2013.09.006.
3. Tiahunova M., Tronkina O., Kirichek G., Skrupsky S. The Neural Network for Emotions Recognition under Special Conditions. In: CMIS. Vol-2864, 2021. p. 121–134. URL: https://ceur-ws.org/Vol-2864/paper11.pdf.
4. Киричек Г. Г., Гаркуша В. Ю. Віртуалізація хостів на основі Proxmox VE в умовах надлишкового використання ресурсів. Вчені записки ТНУ імені В.І. Вернадського. Серія «Технічні науки». 2021. Вип. 32 (71). № 1. С. 78–84. DOI https://doi.org/10.32838/2663-5941/2021.1-1/13.
5. Sharma R. A review on software defined networking. Int J Sci Res Comput Sci Eng Inf Technol, 2021, 11–14. DOI https://doi.org/10.32628/CSEIT21728.
6. Kreutz D., Ramos F.M., Verissimo P.E., Rothenberg C.E., Azodolmolky S., Uhlig S. Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 2014. 103.1, 14–76. DOI https://doi.org/10.1109/JPROC.2014.2371999.
7. Yanamala A. K. Y. Emerging challenges in cloud computing security: A comprehensive review. International Journal of Advanced Engineering Technologies and Innovations, 2024. 1.4, 448–479. URL: https://thesisexpertsofficial.com/pdfs/4.pdf
8. Rowshanrad S., Namvarasl S., Abdi V., Hajizadeh M., Keshtgary M. A survey on SDN, the future of networking. Journal of Advanced Computer Science & Technology, 2014. 3.2, 232. DOI https://doi.org/10.14419/jacst.v3i2.3754.
9. Koponen T., Casado M., Gude N., Stribling J., Poutievski L., Zhu M., Ramanathan R., Iwata Y., Inoue H., Hama T., Shenker S. Onix: A distributed control platform for large-scale production networks. In: 9th USENIX symposium on operating systems design and implementation (OSDI 10). 2010. URL: https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Koponen.pdf.
10. Mell P., Grance, T. The NIST definition of cloud computing. 2011. URL: https://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf.
11. Subashini S., Kavitha V. A survey on security issues in service delivery models of cloud computing. Journal of network and computer applications, 2011. 34.1, 1–11. DOI https://doi.org/10.1016/j.jnca.2010.07.006.
12. Zakiyyah R., Permana D., Valenecio D., Chowanda A., Muliono Y., Izdihar Z.N. Security Challenges and Issues in Cloud Computing. In: 2024 International Symposium on Networks, Computers and Communications(ISNCC). IEEE, 2024. p. 1–6. DOI https://doi.org/10.1109/ISNCC62547.2024.10758966.
13. Thavi R., Jhaveri R., Narwane V., Gardas B., Jafari Navimipour N. Role of cloud computing technology in the education sector. Journal of Engineering, Design and Technology, 2024. 22.1, 182–213. DOI https://doi.org/10.1108/JEDT-08-2021-0417.
14. Kumar S. U. B. O. D. H., Athavale V. A., Kartikey D. I. V. Y. E. Security issues in cloud computing: A holistic view. International Journal of Internet of Things and Web Services, 2021. 6, 18–29. URL: https://www.iaras.org/iaras/filedownloads/ijitws/2021/022-0003(2021).pdf
15. Dillon T., Wu C., Chang E. Cloud computing: issues and challenges. In: 2010 24th IEEE international conference on advanced information networking and applications. Ieee, 2010. p. 27–33. DOI https://doi.org/10.1109/AINA.2010.187.
16. Confidently L.A.O., Chakraborty M., Kundan A.P. Monitoring Cloud-Native Applications. 2021. URL: https://link.springer.com/book/10.1007/978-1-4842-6888-9
17. Vuorinen S. Monitoring Integration Systems and Visualization. 2022. URL: https://www.utupub.fi/bitstream/handle/10024/154329/Vuorinen_Simo_opinnayte.pdf?sequence=1.
18. Beyer B., Jones C., Petoff J., Murphy N. R. Site reliability engineering: how Google runs production systems. " O'Reilly Media, Inc.", 2016.
19. von Goethe J.W. Prometheus. Voltaire Press, 2024.
20. Shaji A. S., George M. M. Elastic stack: A comprehensive overview. 2024 IEEE Recent Advances in Intelligent Computational Systems (RAICS), 2024, 1–5. DOI https://doi.org/10.1109/RAICS61201.2024.10690099.
21. Chakraborty M., Kundan, A.P. Grafana. In: Monitoring cloud-native applications: Lead agile operations confidently using open source software. Berkeley, CA: Apress, 2021. p. 187–240. URL: https://link.springer.com/chapter/10.1007/978-1-4842-6888-9_6.
Published
2025-12-30
How to Cite
Kyrychek, H. H., Tseluiko, R. O., Tiahunova, M. Y., & Zhyvohliad, V. A. (2025). CLOUD SERVICES IN DISTRIBUTED NETWORK INFRASTRUCTURE. Systems and Technologies, 70(2), 232-239. https://doi.org/10.32782/2521-6643-2025-2-70.26
Section
COMPUTER ENGINEERING