EVALUATING THE TRANSPORT SYSTEM EFFICIENCY OF PUMPING ELECTRICALLY CONDUCTIVE LIQUID BASED ON THE RESULTS OF MATHEMATICAL MODELING
Abstract
Today in many industries there is a need to pump electrically conductive fluids. In contrast to classical hydrodynamics, MHD modeling requires the simultaneous solution of the equations of hydrodynamics and electrodynamics, which significantly complicates the modeling process. For electrically conductive fluids, such a number of experimental studies has not yet been conducted, in addition, the dependencies are complicated by the influence of the magnetic field and the need to take into account their magnitude. An urgent task is to determine the dependences of the pressure losses of local resistances during the flow of electromagnetic fluids on electromagnetic and hydrodynamic parameters. The development of computational hydrodynamics in recent years has led to the fact that the use of CFD-calculations can practically replace valuable experimental studies of electrically conductive fluids by mathematical modeling. Experimental studies are complicated by the use of powerful electromagnets and a variety of electrically conductive fluids, which often have not only electromagnetic properties, but are often non-Newtonian. Based on the numerical simulation of the flow of conductive fluid in the pipeline elbow, the dependences of the pressure losses at the bend in the elbow were determined by solving the Navier – Stokes equations averaged according to Reynolds. The magnetic field has a significant effect on the diagram of the velocity before and after the turn in the knee due to the fact that the magnetic induction vector in either the first or second section is perpendicular to the tube. At relatively small values of Reynolds numbers, the effect of the magnetic field is very significant, which increases the local resistance coefficient by more than 15 times compared to the coefficient without the action of the magnetic field.
References
Frank M. Visual analysis of two-dimensional magnetohydrodynamics. Phys.Fluids, 2001. vol.13, pp. 2287-2295.
Gedik E., Kurt H., Recebli Z. CFD simulation of magnetohydrodynamic flow of a liquid-metal galinstan fluid in circular pipes. Fluid Dynamics and Materials Processing, 2013. 9(1), pp. 23-33.
Sabu A.S., Mathew A., Neethu T.S., George K.A. Statistical analysis of MHD convective ferro-nanofluid flow through an inclined channel with hall cur-rent, heat source and soret effect. Thermal Science and Engineering Progress, 2021. 22, pp. 100816.
Nijhawan P., Singla M.K., Gupta J. A Proposed Hybrid Model for Elec-tric Power Generation: A Case Study of Rajasthan, India. IETE Journal of Research, 2021. pp. 1-11.
Attia H.A., Ahmed M.E. Circular pipe MHD flow of a dusty Bingham fluid. Journal of Applied Science and Engineering, 2005. 8(4), pp. 257-265.
Syomin D.A., Rogovyi A.S. Vlijanie tipa i razmera raschetnyh setok na tochnost' rascheta techenij v vihre-kamernyh nagnetateljah. Vіsnik Nacіonal'nogo tehnіch-nogo unіversitetu «HPІ». Zbіrnik naukovih prac'. Serіja: Gіdravlіchnі mashini ta gіdroagregati. Harkіv: NTU «HPІ». 2016. № 41 (1213). S. 70-77.
Syomin D.A., Rogovyi A.S., Levashov A.N., Levashov Ja.N. Verifikacija raschetov techenij v vihrekamernyh ustrojstvah. Vіsnik NTUU "KPІ". Ser. Mashinobuduvannja, 2016. № 2 (77). S. 71-78.
Hartmann J., Lazarus F. Hg-dynamics II. Theory of laminar flow of elec-trically conductive Liquids in a Homogeneous Magnetic Field, 1937. 15(7).
Alfvén H. Magnetohydrodynamics and the thermonuclear prob-lem. Proceedings of the Second Nations International Conference, 1598. Vol. 31.
Davidson P.A. Magnetohydrodynamics in materials processing. Annual Review of Fluid Mechanics, 1999. 31(1), pp. 273-300.
Takeuchi J., Satake S.I., Morley N.B., Kunugi T., Yokomine T., Abdou M.A. Experimental study of MHD effects on turbulent flow of Flibe simulant flu-id in circular pipe. Fusion Engineering and Design, 2008. 83(7-9), pp. 1082-1086.
Zhang X., Pan C., Xu Z. Experimental investigations on liquid metal MHD turbulent flows through a circular pipe with a conductive wall. Fusion Engineering and Design, 2017. 125, pp. 647-652.
Csizmadia P, Till S, Hos C. An experimental study on the jet breakup of Bingham plastic slurries in air. Exp Therm Fluid Sci, 2019.102, pp. 271-278.
Liu M, Duan YF. Resistance properties of coalewater slurry flowing through local piping fittings. Exp Therm Fluid Sci, 2009. 33(5), pp.828-837.
Rogovyi A., Korohodskyi V., Medvediev Ye. Influence of Bingham fluid viscosity on energy performances of a vortex chamber pump. Energy. 2021. Vol. 218. pp. 119432.
Meng Z., Zhang S., Jia J., Chen Z., Ni M. A K‐Epsilon RANS turbu-lence model for incompressible MHD flow at high Hartmann number in fusion liquid metal blankets. International Journal of Energy Research, 2018. Vol. 42(1), pp. 314-320.
Rogovyi A.S. Verification of fluid flow calculation in vortex chamber superchargers. Автомобильный транспорт: сб. науч. тр. Харьков, 2016. Вып. 39. С. 39-46.
Tavangar S, Hashemabadi SH, Saberimoghadam A. CFD simulation for secondary breakup of coalewater slurry drops using OpenFOAM. Fuel Process Technol 2015.132. pp.153e63.
Chernetskaya-Beletskaya N., Rogovyi A., Baranov I., Krut A., Mirosh-nikova M., Bragin N. Increasing the efficiency of highly concentrated coal-water fuel based on the simulation of non-Newtonian fluid flow. In MATEC Web of Conferences 2019. Vol. 294, pp. 01009.
Syomin D.O., Rogovyi A.S. Vykhorokamerni nahnitachi: monohrafiya. Kharkiv. FOP Mezina V.V. 2017. 204 s.
Rogovyi A. S. Rozrobka teoriyi ta metodiv rozrakhunku vykhorokamernykh nahnitachiv : dys. ... d-ra tekhn. nauk : spets. 05.05.17 / Kharkivs'kyy nats. avtomobil'no-dorozhniy un-t. Kharkiv, 2017. 364 s.
Chernetskaya-Beletskaya N., Rogovyi A., Baranov I., Miroshnikova M. Matematychna model' prostorovoyi tryvymirnoyi techiyi vodovuhil'noho palyva. Visnyk SNU im. V.Dalya. Syevyerodonets'k: Vyd-vo Skhidnoukr. nats. un-tu im. V.Dalya. 2018. #1 (242). S. 159-164.
Widlund O. Implementation of MHD model equations in CFX 4.3. 2000.
Lojcjanskij L.G. Mehanika zhidkosti i gaza: Ucheb. dlja vuzov. 7-e izd., ispr. M.: Drofa 2003. 840 s.
Garbaruk A.V., Strelets M. Kh, Shur M.L. Modelirovanie turbulentnos-ti v raschotah slozhnyh techenij, Text-book, Publishing house of Polytechnic Uni-versity, St.-Petersburg, 2012 (in Russian), 88 pp.
Matyushenko A. A., Stabnikov A. S., Garbaruk A. V. Criteria of com-putational grid generation for turbulence models taking into account laminar-turbulent transition. In Journal of Physics: Conference Series. 2019. Vol. 1400, No. 7. pp. 077047.
Ansys C.F.X. Solver Theory Guide. Release 2019 R3. Canonsburg: ANSYS. 2019.
Zhang H., Li J., Wang Z., Xu Y., Lai Y. The numerical modeling of melt flow and mhd instabilities in an aluminum reduction cell. JOM, 2010. 62(11), pp. 26-31.
Syomin D.O., Pavlyuchenko V.O., Maltsev Ya.I., Voytse-khovskyi S.V., Rogovyi A.S., Dmytriyenko L.V., Maltseva M.O. Vykhrovi vykonavchi prystroyi: V 2-kh chastynakh: Monohrafiya. Lugansk: vyd-vo SNU im. V.Dalya, 2009. Ch.1 Odnoridni robochi seredovyshcha. 256 s.
Rogovyi A., Khovanskyi S., Hrechka I., Gaydamaka A. Studies of the Swirling Submerged Flow Through a Confuser. In Design, Simulation, Manufac-turing: The Innovation Exchange, 2020. pp. 85-94.
Rogovyi A.S. Vykorystannya metodiv chyslovoho vyri-shennya zadach inzhenernoho analizu: navchal'nyy posibnyk. Kharkiv: KhNADU, 2019. 112 s.
This work is licensed under a Creative Commons Attribution 4.0 International License.