FORMALIZATION OF AUTOMATED TESTING PROCESSES OF COMPLEX SOFTWARE SYSTEMS BASED ON MULTIAGENT MODELING

Keywords: automated testing; multi-agent modeling; intelligent systems; graph model; efficiency metrics; adaptive test- ing; artificial intelligence

Abstract

The study is devoted to the formalization of automated testing processes for complex software systems operating in dynamic and stochastic environments. It is shown that traditional testing methods based on fixed test scenarios do not ensure sufficient adaptability and scalability as the complexity of modern software increases. The research substantiates the feasibility of applying a multi-agent approach as an effective tool for building intelligent testing systems capable of self-organization, learning, and optimization of defect detection processes. The study performs a system-theoretic analysis of the testing process as a dynamic system composed of multiple autonomous agents interacting with each other and with the testing environment. A generalized formal model of the multi-agent testing process is proposed, which defines the main structural elements: a set of agents, the environment of their interaction, the test scenario space, behavioral policies, and the evaluation function of the obtained results. This approach allows considering testing as an evolutionary process in which agents adapt their strategies based on accumulated experience and feedback, gradually improving the efficiency and completeness of software verification. A graph-based and stochastic model of the test scenario space is developed, taking into account the probability of defect detection, testing cost and duration, coverage degree, and other efficiency attributes. A system of metrics is defined, encompassing both classical measures of testing performance and multi-agent specific parameters such as cooperativity, conflict rate, and convergence speed of agent policies. Algorithms for model correctness verification are described, providing consistency, reach- ability, stability, and adequacy assessment under stochastic disturbances. The obtained results form a theoretical foundation for developing intelligent multi-agent systems of automated testing capable of adaptation and self-organization. The proposed approach enhances the efficiency of the testing process, reduces time and resource costs, and increases software reliability. Future research will focus on developing agent learning mechanisms and integrating the proposed model into CI/CD processes and continuous quality control systems.

References

1. Helmy M., Sobhy O., ElHusseiny F. AI-Driven Testing: Unleashing Autonomous Systems for Superior Software Quality Using Generative AI. International Telecommunications Conference (ITC-Egypt). 2024. DOI: https://doi.org/10.1109/ITC-Egypt61547.2024.10620598
2. Kesavan E. AI-Driven and Autonomous Testing. International Scientific Journal of Engineering and Management. 2024. DOI: https://doi.org/10.55041/isjem01651
3. Nama P. Integrating AI in testing automation: Enhancing test coverage and predictive analysis for improved software quality. World Journal of Advanced Engineering Technology and Sciences. 2024. DOI: https://doi.org/10.30574/wjaets.2024.13.1.0486
4. Doddapaneni J. AI Test Design and Script Generator: Enhancing Software Testing through AI-driven Automation. International Journal of Multidisciplinary Research and Growth Evaluation. 2025. DOI: https://doi.org/10.54660/.ijmrge.2025.6.1.1942-1943
5. Fawaz A., Mougharbel I., Al-Haddad K., Kanaan H. Y. Energy routing protocols for energy Internet: A review on multi-agent systems, metaheuristics, and artificial intelligence approaches. IEEE Access. 2025. 19 p.
6. Симонов Д. І., Заїка Б. Ю., Симонов Є. Д. Мультивихідні регресійні моделі для управління багатокомпонентними динамічними системами. Таврійський науковий вісник. Серія: Технічні науки, (6). 2024. с. 106–119.
7. Симонов Д. І. Ідентифікація та контроль хаотичних процесів у складних технічних системах. Науковий вісник Ужгородського університету. Серія «Математика і інформатика», 46(1). 2025. с. 273–284.
8. Kovacevic J., Radujko U., Djukic M., Novkovic T. Smart Multi-Agent Framework for Automated Audio Testing. Elektronika ir Elektrotechnika. 2023. DOI: https://doi.org/10.5755/j02.eie.33222
9. Nunez A., Islam N. T., Jha S., Najafirad P. AutoSafeCoder: A Multi-Agent Framework for Securing LLM Code Generation through Static Analysis and Fuzz Testing. arXiv.org. 2024. DOI: https://doi.org/10.48550/arXiv.2409.10737
10. Nooyens R., Bardakci T., Beyazit M., Demeyer S. Test Amplification for REST APIs via Single and Multi-Agent LLM Systems. International Conference on Testing Software and Systems. 2025. DOI: https://doi.org/10.48550/arXiv.2504.08113
11. Liu C., Gu Z., Wu G., Zhang Y., Wei J., Xie T. Temac: Multi-Agent Collaboration for Automated Web GUI Testing. arXiv.org. 2025. DOI: https://doi.org/10.48550/arXiv.2506.00520
12. Kong H., Hu D., Ge J., Li L., Li T., Wu B. VulnBot: Autonomous Penetration Testing for A Multi-Agent Collaborative Framework. arXiv.org. 2025. DOI: https://doi.org/10.48550/arXiv.2501.13411
13. Hall V. A. Coding with ChatGPT. Birmingham: Packt Publishing Ltd, 2024. 304 p.
14. Bluck A. S. Practical Java Programming with ChatGPT. Delhi: Orange Education Pvt Limited, 2023. 428 p.
15. Bodungen C. ChatGPT for Cybersecurity Cookbook. Birmingham: Packt Publishing Ltd, 2024. 376 p.
16. Herszfang H. P., Henstock P. V. Supercharged Coding with GenAI. Birmingham: Packt Publishing Ltd, 2025. 460 p.
Published
2025-12-30
How to Cite
Symonov, D. I., & Demenko, I. O. (2025). FORMALIZATION OF AUTOMATED TESTING PROCESSES OF COMPLEX SOFTWARE SYSTEMS BASED ON MULTIAGENT MODELING. Systems and Technologies, 70(2), 186-194. https://doi.org/10.32782/2521-6643-2025-2-70.20
Section
COMPUTER SCIENCES