EVALUATION OF THE INFLUENCE OF THE AERODYNAMIC COEFFICIENTS OF THE FRONTAL RESISTANCE FORCE OF THE PROJECTILE ON ITS FLIGHT DISTANCE

Keywords: artillery projectile, drag force, aerodynamic coefficient, firing range, relative error, difference method

Abstract

An urgent and important issue in the creation and development of promising anti-artillery systems and ammunition for them is the introduction of automated control systems with the wide use of ballistic computers, which include new approaches to ballistic and meteorological data preparation for firing, the mathematical basis of which are ballistic integrating algorithms for calculating installations for firing based on solving the inverse problem of external ballistics. An important component of the aerodynamic force vector acting on the projectile is the drag force, which has a direction opposite to the direction of the projectile’s velocity and significantly affects the dynamics of its flight. The practical application of the theoretical provisions of the research of frontal resistance is their use for calculating projectiles flight trajectories and compiling the firing tables of artillery systems, therefore, the accuracy of the tabular range calculation is taken as a measure of the accuracy of its determination. The analysis of requirements for the accuracy of calculation of the tabular range of artillery systems shows that the value of the median error at short firing ranges has a value of the order 0.50% of the flight range, at long ranges – (0.25 ÷0.30)%. The experimental study of the drag force is reduced to the study of its aerodynamic coefficients at different values of Mach numbers. In addition, it is important to evaluate the influence of both the linear and non-linear components of the aerodynamic drag force coefficient on the range of the projectile. To evaluate the influence of aerodynamic coefficients on the flight range of the projectile, the difference method was used, which consists in solving the system of differential equations of spatial motion of a projectile so that, by changing the value of each of the component aerodynamic coefficients, a change in the value of the flight range is obtained. Numerical modeling of the dependence of the flight range error of 155-mm HE projectiles – Assegai M2000 and ERFB/BB on a change in the value of their aerodynamic coefficients by 1%. It is shown that the largest error in the flight range of the projectile is introduced by the linear coefficient of the force of frontal resistance when firing at the maximum charge – 0.9% of the firing range, respectively, the smallest, at the minimum charge – 0.13%. In addition, the simulation results showed that the influence of the quadratic coefficient of the frontal drag force has 1-2 orders of magnitude smaller values compared to the linear one.

References

1. McCoy R. L. Modern Exterior Ballistics. Atglen, PA. : Schiffer Military History, 2012. 328 p.
2. Carlucci D. E., Jacobson S. S. Ballistics, theory and design of guns and ammunition : book. London, New York : Taylor & Francis Group, 2007. 514 p.
3. STANAG 4355 (Edition 3), The modified point mass and five degrees of freedom trajectory models: NSAl0454(2009)-JAIS/4355, dated 17 April 2009. 95 p. (NATO Standardization Agency).
4. Грабчак В.І., Бондаренко С.В. Аналіз існуючих та перспективних методів визначення сили опору повітря руху снарядів. Військ.-техн. зб. Львів : АСВ. 2013. Вип. 2(9). С. 13-19. DOI:https:/doi.org/10.33577/2312-4458.9.2013. 13-19.
5. Грабчак В.І., Бондаренко С.В. Оцінка точності визначення серединної похибки розрахунку опорної дальності артилерійських стрільб. Сучасні інформаційні технології у сфері безпеки та оборони. Наук. журнал. К. : НУОУ. 2015. №1 (22). С. 50-54. DOI:https:/doi.org/10. 33099/2311-7249/2015-0-1(22)-50-54.9.2013.13-19.
6. Yu. N. Kosovtsov, V. I. Hrabchak. The Inverse Problem of External Ballistics for Identification of Aerodynamic Coefficients of a Spin-stabilized Projectile Within the Modified Point-Mass Trajectory Model. Наук.-техн. журнал. Київ : ЦНДІ ОВТ ЗСУ. 2021. № 1 (29). С. 28-35. DOI:https:/doi.org/1034169/2414-0651.2021.1(29).28-35.
7. Майданюк В.А., Бондаренко С.В., Грабчак В.І. Аналітичні функції нелінійних параметрів польоту снаряда. Зб. наук. праць. Одеса : ВА (Одеса). 2023. Вип. 1 (19) 2023. С. 5-16. DOI:https:/doi.org/10.37129/2313-750. 2023.19.5-16.
8. Дубовик В. П., Юрик І. І. Вища математика. К. : А.С.К., 2006. 648 с.
9. Baranowski L. Modeling, Identification and Numerical Study of the Flight Dynamics of Ballistic Objects for the Need of Field Artillery Fire Control Systems. Military University of Technology, Warsaw, 2011. p. 258.
10. Kincaid D. Numerical analysis. Brooks : Cole Publishing Company. 1991. 690 p.
Published
2024-06-26
How to Cite
Bondarenko, S. V., Kosovtsov, Y. M., & Hrabchak, Z. M. (2024). EVALUATION OF THE INFLUENCE OF THE AERODYNAMIC COEFFICIENTS OF THE FRONTAL RESISTANCE FORCE OF THE PROJECTILE ON ITS FLIGHT DISTANCE. Systems and Technologies, 67(1), 90-95. https://doi.org/10.32782/2521-6643-2024-1-67.14
Section
ARMS INVENTORY AND MILITARY HARDWARE