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METHOD FOR IMPLEMENTING THE SQUARING OPERATION IN THE RABIN 
CRYPTOSYSTEM BASED ON THE USE OF THE RESIDUE NUMBER SYSTEM

The article proposes a method for implementing the operation of squaring a number in the Rabin cryptosystem, which 
increases the speed of arithmetic operations by using the Residue Number System (RNS). The proposed approach is based 
on the transition from the positional numeral system to RNS, which allows computations to be performed independently for 
each modulus and enables parallel data processing. Unlike traditional methods that rely on sequential execution of arithmetic 
operations with large numbers, the use of RNS avoids carry propagation, thereby reducing time complexity.

A mathematical model of the process of multiplying two numbers represented in RNS has been developed based on the use 
of table multiplication coding. This approach takes into account the symmetry properties of table multiplication, allowing the 
volume of required computations to be reduced to 25% of the full table. Based on this mathematical model, a method for squaring 
numbers in RNS has been proposed.

A comparative analysis showed that the use of the proposed approach provides a significant performance gain: for 32-bit 
operands, the speedup is 2048 times, and for 64-bit operands, up to 8192 times compared to the positional numeral system.

The research results confirm the feasibility of applying the Residue Number System in the Rabin cryptosystem for 
implementing the squaring operation. The proposed method can be effectively used in high-performance cryptographic systems 
designed for processing large numerical fields. Further research should focus on developing a universal structure for modular 
computations in RNS for other asymmetric cryptosystems, as well as creating a hardware implementation of the method to 
practically evaluate its performance.

Key words: Rabin cryptosystem, Residue Number System, squaring, performance enhancement, parallel computations.

Ковальчук Д. М. Метод реалізації операції піднесення до квадрату в криптосистемі Рабіна на основі 
використання системи залишкових класів

У статті запропоновано новий метод реалізації операції піднесення числа до квадрату в криптосистемі Рабіна, 
який спрямований на суттєве підвищення швидкодії виконання арифметичних операцій завдяки застосуванню системи 
залишкових класів (СЗК). Основна ідея підходу полягає у переході від традиційної позиційної системи числення до СЗК, 
що дозволяє виконувати обчислення незалежно для кожного модуля, відкриваючи можливості для паралельної обробки 
даних. Такий підхід суттєво відрізняється від класичних методів, які оперують великими числами послідовно та обме-
жені необхідністю обробки переносу розрядів, що підвищує часову складність операцій. Використання СЗК дозволяє 
усунути цей недолік, забезпечуючи значне скорочення обчислювального часу.

У роботі розроблено математичну модель множення двох чисел у СЗК, що базується на використанні коду таб-
личного множення. Модель враховує властивості симетрії таблиці множення, що дозволяє зменшити обсяг необхідних 
обчислень до 25 % від повної таблиці На основі цієї моделі запропоновано метод піднесення чисел до квадрату в СЗК, 
який демонструє високу ефективність для чисел великої розрядності. Метод дозволяє виконувати обчислення неза-
лежно по кожному модулю, що робить його придатним для апаратної реалізації.

Проведений порівняльний аналіз показав, що запропонований підхід забезпечує істотне прискорення обчислень: 
для 32-розрядних операндів швидкодія зростає у 2048 разів, а для 64-розрядних операндів – до 8192 разів у порівнянні 
з традиційними методами позиційної системи числення. Це свідчить про високу ефективність використання СЗК 
у криптосистемі Рабіна та демонструє практичну користь для високопродуктивних криптографічних систем, орієн-
тованих на обробку великих числових полів.

Отримані результати підтверджують доцільність застосування СЗК для реалізації операцій піднесення до ква-
драту та відкривають перспективи для подальших досліджень. Подальші напрями включають розробку універсальної 
структури модульних обчислень у СЗК для інших асиметричних криптосистем, оптимізацію алгоритмів для апаратної 
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реалізації та практичну оцінку продуктивності запропонованого методу у різних обчислювальних середовищах. Засто-
сування запропонованого підходу може стати ключовим елементом у створенні швидких і надійних криптографічних 
рішень, що відповідають сучасним вимогам інформаційної безпеки та обробки великих обсягів даних.

Ключові слова: криптосистема Рабіна, система залишкових класів, піднесення до квадрату, підвищення швидко-
дії, паралельні обчислення.

Problem statement. At the current stage of cryptography development, one of the key areas of research is 
improving the efficiency of basic mathematical operations that form the foundation of cryptographic systems [1]. 
One such system is the Rabin cryptosystem. The Rabin cryptosystem belongs to the class of asymmetric encryption 
systems whose security is based on the computational difficulty of residueing large integers [2]. Unlike the RSA 
system, where encryption involves exponentiation with an arbitrary exponent, the Rabin cryptosystem uses only the 
squaring operation modulo the product of two prime numbers. This property makes it mathematically elegant and 
simple to implement, while maintaining a high level of cryptographic strength [3, 4].

For key generation, two large prime numbers p and q are randomly chosen so that they are relatively prime. 
Their product n p q� �  serves as the public key, while the numbers p and q themselves form the private key, which 
must be kept secret. The choice of such parameters ensures the one-way nature of the encryption function – the 
inverse transformation is possible only if the residues of n are known [4, 5].

Message encryption consists in transforming the input data block M, which satisfies the condition 0 < <M n ,  
according to the formula

C M n= 2 mod ,                                                                           (1)
where C is the ciphertext. The encryption process is extremely simple, as it involves only one arithmetic oper-

ation – squaring. At the same time, retrieving the original message M from the known C without knowledge of the 
prime residues of the modulus n is practically impossible due to the computational complexity of the factorization 
problem [6].

The decryption process involves the use of the secret parameters p and q. At the first stage, the remainders are 
computed as follows:

f C p s C q= =mod , mod .                                                                 (2)
Next, it is necessary to find the quadratic roots of the obtained values under the corresponding moduli:

x f p y s q2 2≡ ≡( ) ( )mod , mod .                                                              (3)
Since each of these equations has two solutions, the total number of possible combinations equals four. 

Accordingly, a system of congruences is formed:
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For each of these systems, the corresponding value of M is computed using the Chinese Remainder Theorem 
[7]. As a result, four potential solutions are obtained, among which only one corresponds to the original message.

However, in the practical implementation of the Rabin cryptosystem, a number of issues arise due to the high 
time complexity of arithmetic operations in multi-bit numerical fields. Operations such as multiplication, division, 
or squaring in the traditional positional number system require significant CPU resources, especially when process-
ing numbers longer than 1024 bits – the minimum required security level under modern conditions. This creates the 
need to search for new approaches to optimizing computations in cryptographic algorithms [8].

One promising direction is the use of the RNS. The application of RNS enables the parallelization of compu-
tations, which is not possible when using a positional number system. As a result, there is no need for carry propaga-
tion, and the basic operations – addition, subtraction, and squaring – can be performed independently and in parallel, 
significantly increasing the computational speed of the system [5, 8].

Analysis of recent research and publications. Research on optimizing cryptographic computations using 
the RNS has been actively developing in recent years. In particular, work [9] proposed an efficient implementa-
tion of the Montgomery algorithm for modular multiplication in a minimally redundant RNS, which significantly 
accelerates reduction operations and reduces overhead for large modular computations. This approach demonstrates 
potential applicability to squaring operations characteristic of the Rabin cryptosystem; however, the article does not 
directly address the problem of computing square roots.

Another study [10] developed RNS reduction algorithms that take into account properties of quadratic resid-
uosity, which is especially relevant for the Rabin cryptosystem because decryption requires finding quadratic roots. 
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The authors propose methods that reduce the number of base multiplications in RNS and optimize computations, yet 
the concrete integration of these algorithms into the Rabin scheme has not been implemented to date.

Research presented in [11] introduced the concept of a multi-layer recursive RNS, where large moduli are 
decomposed into layers, enabling arithmetic operations on very large numbers to be performed in parallel within 
smaller subsystems. This approach can substantially shorten computation time for large numeric fields; however, a 
specific adaptation of these algorithms to the Rabin cryptosystem is not described.

In [12], the application of RNS for accelerating modular operations in isogeny-based cryptography at the 
hardware level was investigated, demonstrating significant performance gains when working with large numbers. 
Nevertheless, that work does not consider squaring operations or the particular requirements of the Rabin crypto-
system.

Additionally, work [13] describes the use of the Residue Number System to implement modular operations in 
RSA, which substantially reduces the execution time of large-number computations. Although that research focused 
on RSA, its methodology can be adapted to optimize the squaring operation in Rabin, since both systems employ 
large moduli and modular arithmetic.

The analysis of existing studies shows that applying RNS to optimize modular computations is a promising 
direction: it can accelerate basic operations, reduce complexity, and enable parallel computation. However, direct 
application of these methods specifically to the squaring operation in the Rabin cryptosystem has not yet received 
sufficient scientific treatment. This gap underlines the relevance of further research and the development of novel 
methods for implementing the squaring operation in Rabin using RNS to improve the speed and efficiency of cryp-
tographic processes [14].

The purpose of the article is to develop and analyze the efficiency of a method for implementing the squar-
ing operation in the Rabin cryptosystem using the Residue Number System, which will help reduce computational 
complexity and increase the speed of cryptographic processes without compromising the system’s security.

Presentation of the main research material. The squaring operation of a number M is based on multiply-
ing the number M M M2 � � .  In the RNS, the multiplication of a number M і k1 11 1 1� ( , ..., , ..., )� � �  by a number 
M і k2 21 2 2� ( , ..., , ..., )� � �  is performed by multiplying the corresponding residues �1і o���� o and �2і o���� o modulo the corre-
sponding modulus �і і k( , )�1  for independently and in parallel across each of the k RNS bases [13, 15]. The range 
of representable numbers (or the system modulus) is equal to the product of all moduli:

N k� � � �� � �1 2 ... .                                                                         (5)
The multiplication of residues �1і o���� o and �2і o���� o modulo �і o���� o can be efficiently implemented using a table-based 

method that leverages the symmetry properties of the arithmetic table along its diagonals, rows, and columns. 
Thanks to this approach, only 25% of the full table is required for implementing modular multiplication. A table 
multiplication code is used for this purpose [15]. Table 1 is constructed with the numerical values of the first residue 
µ1� placed horizontally and the second residue �2і o���� o vertically. The cells at the intersections indicate the correspond-
ing results of the modular multiplication � � �1 2і і і o� � �mod ���� o.

This table exhibits symmetry with respect to the diagonals, vertical, and horizontal lines passing between the 
numbers ( )�і o�1

2 ���� o and ( )�і o�1
2 ���� o for an odd �і o���� o The symmetry along the left diagonal is determined by the com-

mutativity of the multiplication operation, while the symmetry along the right diagonal is defined by the relation 
� � � � � �і і i і і і іm�� � �� � � � � �1 2 1 2 mod .  The symmetry with respect to the vertical and horizontal axes is due to the fact 

that the sum of multiples of numbers is divisible by �і o,���� o i.e.,
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Thus, to reconstruct the entire table, it is sufficient to know only one-eighth of it, which significantly reduces 
the size of the table required to implement the multiplication operation.

To achieve this, a special encoding of the residues �1і o���� o and �2і o���� o is applied, known as the “table multiplication 

code” [15-17]. The values of �1і o���� o and �2і o���� o, within the range 0 1
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Table 1
Table for the implementation of the modular multiplication operation
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The method for determining the result of modular multiplication using the TMC is as follows [15].
If two numbers �1і o���� o and �2і o���� o are represented in TMC form as � � � �� �� �1 1 2 21 2і і і іi i
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Based on the general mathematical model (7) – (8) for implementing the multiplication of two residues µ1� 
and �2і o���� o modulo �і o���� o using the table method, we synthesize a mathematical model for multiplying two numbers 
M і k1 11 1 1� ( , ..., , ..., )� � �  and M і k2 21 2 2� ( , ..., , ..., )� � �  in the RNS.

The process of table-based implementation of the multiplication operation of two numbers in the residue 
number system can be represented as follows [17]:
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In this case, for an even number ηi :
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in this case 0 1
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Thus, the relationships (9) – (13) represent the mathematical model of the process of multiplying two numbers 
M і k1 11 1 1� ( , ..., , ..., )� � �  and M і k2 21 2 2� ( , ..., , ..., )� � � . Let us now consider the case where the number M needs to 
be squared:

M N M M N

і k і k

2

1 1

(mod ) (mod )

( , ..., , ..., ) ( , ..., , ..., )

� � �

��

�
� � � � � ��� � �

� � � �� �
mod

( )mod ( )mod ( )mod ., ..., , ...,

N

i i i k k k� � � � � � � � �1 1 1

                  

                                       (14)

First, we show that for any residue in the RNS, the following mathematical relationship holds [17]:
� � � � �i i i i i

2 2mod ( ) mod� �                                                               (15)
Indeed, the square of the residue µi

2  can be expressed as � �i i i i
2 � �� �  ( )0 1� � ��i i� , which means that 
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relationship holds true for both even and odd values of ηi.  The analytical expression (15) represents a mathematical 
model of the process used to implement � �i i

2 mod  in practical computations [18]. The structural diagram of this 
operation M N2 (mod )  is shown in fig. 1. The operation of the device proceeds as follows: a number µi  in binary 
code is fed to the input and stored in the input register. Then, from the output of the decoder, the number µi  in 
unary code passes through the corresponding OR logic elements to the input of the encoder, which corresponds to 
the value � �i i

2 mod . From the encoder’s output, the obtained value � �i i
2 mod  in binary form is sent to the output 

register. It is evident that the key element in the technical implementation of the operation � �i i
2 mod  is the correct 

coding of the connections between the decoder and the encoder.
Let us consider an example of the practical application of the developed method for exponentiation in the 

RNS for the Rabin cryptosystem, with the bases �1 3� ,  �2 5� ,  �3 7� ,  and N � � � � � �� � �1 2 3 3 5 7.  The range of 
code words in the RNS is presented in table 2. The algorithm for implementing the operation of squaring a number 
modulo M N2 (mod )  for �1 3� ,  �2 5� ,  �3 7� ,  is presented in table 3.

Let us consider examples of squaring numbers using the proposed method. Suppose we need to calculate 72. 
In the RNS, this number 7 is represented as M = ( , , )1 2 0 . In binary code, this value is M = ( , , )01 010 0002 2 2  and is 
fed to the inputs of the respective decoders. At the output of the encoders, we obtain M 2

2 2 201 100 000= ( , , )  in binary 
codes, which corresponds to M 2

10 10 101 4 0= ( , , )  in decimal. From table 4, it is seen that (1,4,0) in RNS corresponds 
to 49 in the positional number system, i.e., 72=49, confirming that the result is correct. 

Let us determine the time gain when performing the squaring operation in the Rabin cryptographic system as 
the ratio between the execution time of the operation in the positional number system and that achieved using the 
proposed method in the RNS. It is known that in a positional number system, the execution time of a multiplication 
operation is given by tPNS � 2 2� �  where σ  is the number of binary digits in the operand representation, and τ  is 
the propagation delay of the “OR” logic elements. In the RNS, due to the parallel nature of computations, the time 
required for squaring a number is tRNS � �  where τ  is again the propagation delay of the “OR” logic elements. Thus, 
when using 32-bit operands, the performance gain can be calculated as t t

PNS

RNS

� � � �2 2 32 2048
2 2� �
�

�
�  times. 

Similarly, for 64-bit operands, the performance gain is t t
PNS

RNS

� � �2 64 8192
2�
�  times. Therefore, the proposed 

squaring method demonstrates a significant improvement in computational performance, making it highly suitable 
for practical implementation in Rabin cryptosystems.
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Fig. 1. Scheme of the technical implementation of the operation M N2 (mod )



254 ISSN 2521-6643                              Системи та технології, № 2 (70), 2025

Table 2
Table of code words in the RNS with the moduli �� �� �� �� ���� �� ��= 3 = 5 = 7

M( )PNS M ( )RNS

M ( )PNS M ( )RNS

µµ1 = 3 µµ1 = 5 µµ1 = 7 µµ1 = 3 µµ1 = 5 µµ1 = 7
0 010 002 010 0002 010 0002 53 210 102 310 0112 410 1002

1 110 012 110 0012 110 0012 54 010 002 410 1002 510 1012

2 210 102 210 0102 210 0102 55 110 012 010 0002 610 1102

3 010 002 310 0112 310 0112 56 210 102 110 0012 010 0002

4 110 012 410 1002 410 1002 57 010 002 210 0102 110 0012

5 210 102 010 0002 510 1012 58 110 012 310 0112 210 0102

6 010 002 110 0012 610 1102 59 210 102 410 1002 310 0112

7 110 012 210 0102 010 0002 60 010 002 010 0002 410 1002

8 210 102 310 0112 110 0012 61 110 012 110 0012 510 1012

9 010 002 410 1002 210 0102 62 210 102 210 0102 610 1102

10 110 012 010 0002 310 0112 63 010 002 310 0112 010 0002

11 210 102 110 0012 410 1002 64 110 012 410 1002 110 0012

12 010 002 210 0102 510 1012 65 210 102 010 0002 210 0102

13 110 012 310 0112 610 1102 66 010 002 110 0012 310 0112

14 210 102 410 1002 010 0002 67 110 012 210 0102 410 1002

15 010 002 010 0002 110 0012 68 210 102 310 0112 510 1012

16 110 012 110 0012 210 0102 69 010 002 410 1002 610 1102

17 210 102 210 0102 310 0112 70 110 012 010 0002 010 0002

18 010 002 310 0112 410 1002 71 210 102 110 0012 110 0012

19 110 012 410 1002 510 1012 72 010 002 210 0102 210 0102

20 210 102 010 0002 610 1102 73 110 012 310 0112 310 0112

21 010 002 110 0012 010 0002 74 210 102 410 1002 410 1002

22 110 012 210 0102 110 0012 75 010 002 010 0002 510 1012

23 210 102 310 0112 210 0102 76 110 012 110 0012 610 1102

24 010 002 410 1002 310 0112 77 210 102 210 0102 010 0002

25 110 012 010 0002 410 1002 78 010 002 310 0112 110 0012

26 210 102 110 0012 510 1012 79 110 012 410 1002 210 0102

27 010 002 210 0102 610 1102 80 210 102 010 0002 310 0112

28 110 012 310 0112 010 0002 81 010 002 110 0012 410 1002

29 210 102 410 1002 110 0012 82 110 012 210 0102 510 1012

30 010 002 010 0002 210 0102 83 210 102 310 0112 610 1102

31 110 012 110 0012 310 0112 84 010 002 410 1002 010 0002

32 210 102 210 0102 410 1002 85 110 012 010 0002 110 0012

33 010 002 310 0112 510 1012 86 210 102 110 0012 210 0102

34 110 012 410 1002 610 1102 87 010 002 210 0102 310 0112

35 210 102 010 0002 010 0002 88 110 012 310 0112 410 1002

36 010 002 110 0012 110 0012 89 210 102 410 1002 510 1012

37 110 012 210 0102 210 0102 90 010 002 010 0002 610 1102

38 210 102 310 0112 310 0112 91 110 012 110 0012 010 0002

39 010 002 410 1002 410 1002 92 210 102 210 0102 110 0012

40 110 012 010 0002 510 1012 93 010 002 310 0112 210 0102

41 210 102 110 0012 610 1102 94 110 012 410 1002 310 0112

42 010 002 210 0102 010 0002 95 210 102 010 0002 410 1002

43 110 012 310 0112 110 0012 96 010 002 110 0012 510 1012

44 210 102 410 1002 210 0102 97 110 012 210 0102 610 1102

45 010 002 010 0002 310 0112 98 210 102 310 0112 010 0002

46 110 012 110 0012 410 1002 99 010 002 410 1002 110 0012

47 210 102 210 0102 510 1012 100 110 012 010 0002 210 0102

48 010 002 310 0112 610 1102 101 210 102 110 0012 310 0112

49 110 012 410 1002 010 0002 102 010 002 210 0102 410 1002

50 210 102 010 0002 110 0012 103 110 012 310 0112 510 1012

51 010 002 110 0012 210 0102 104 210 102 410 1002 610 1102

52 110 012 210 0102 310 0112
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Table 3
The algorithm for implementing the operation of squaring a number modulo M N2 (mod )	   

for �� �� �� �� ���� �� ��= 3 = 5 = 7

Value of the modulus 
ηi

Value of the 
remainder µi  that is 

applied to the input of 
the decoder

Bus number with 
a “1” value at the 
decoder output

Value at the 
encoder input

Value � �i i
2 mod  

generated at the 
encoder output

3
010=002 0 00 0
110=012 1 01 1
210=102 2 01 1

5

010=0002 0 000 0
110=0012 1 001 1
210=0102 2 100 4
310=0112 3 100 4
410=1002 4 001 1

7

010=0002 0 000 0
110=0012 1 001 1
210=0102 2 100 4
310=0112 3 010 2
410=1002 4 010 2
510=1012 5 100 4
610=1102 6 001 1

Conclusions. In the article research investigates the process of implementing the squaring operation in the 
Rabin cryptosystem using the RNS. The proposed method is based on transitioning from the positional number 
system to RNS, which enables arithmetic operations to be performed independently for each modulus and ensures 
a high level of computational parallelism.

A mathematical model of the process of multiplying two numbers represented in the RNS has been developed 
based on the application of the table multiplication code. This approach takes into account the symmetry properties 
of the table multiplication, which allows reducing the amount of necessary calculations to 25% of the full table. 
Based on the mathematical model of multiplying two numbers in the RNS, a method of squaring numbers in the 
RNS has been proposed.

A comparative analysis has shown that the use of RNS provides a significant increase in performance. For 
32-bit operands, the acceleration is 2048 times, and for 64-bit operands – up to 8192 times compared to performing 
the same operation in a positional number system.

The obtained results confirm the feasibility of applying the Residue Number System in the Rabin crypto-
system for implementing basic arithmetic operations, particularly the squaring operation. The proposed approach 
increases the efficiency of cryptographic computations without reducing the system’s security.

Further research should focus on developing a universal modular computation framework in RNS for other 
cryptosystems, as well as on the hardware implementation of the proposed method to evaluate its performance under 
real operating conditions.
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