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METHOD FOR IMPLEMENTING THE SQUARING OPERATION IN THE RABIN
CRYPTOSYSTEM BASED ON THE USE OF THE RESIDUE NUMBER SYSTEM

The article proposes a method for implementing the operation of squaring a number in the Rabin cryptosystem, which
increases the speed of arithmetic operations by using the Residue Number System (RNS). The proposed approach is based
on the transition from the positional numeral system to RNS, which allows computations to be performed independently for
each modulus and enables parallel data processing. Unlike traditional methods that rely on sequential execution of arithmetic
operations with large numbers, the use of RNS avoids carry propagation, thereby reducing time complexity.

A mathematical model of the process of multiplying two numbers represented in RNS has been developed based on the use
of table multiplication coding. This approach takes into account the symmetry properties of table multiplication, allowing the
volume of required computations to be reduced to 25% of the full table. Based on this mathematical model, a method for squaring
numbers in RNS has been proposed.

A comparative analysis showed that the use of the proposed approach provides a significant performance gain: for 32-bit
operands, the speedup is 2048 times, and for 64-bit operands, up to 8192 times compared to the positional numeral system.

The research results confirm the feasibility of applying the Residue Number System in the Rabin cryptosystem for
implementing the squaring operation. The proposed method can be effectively used in high-performance cryptographic systems
designed for processing large numerical fields. Further research should focus on developing a universal structure for modular
computations in RNS for other asymmetric cryptosystems, as well as creating a hardware implementation of the method to
practically evaluate its performance.
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Kosanvuyx /. M. Memoo peanizauii onepayii nionecenns 0o reaopamy ¢ kpunmocucmemi Pabina na ocnosi
GUKOPUCHAHHA CUCIEMU 3ATTUWKOBUX KACI8

Y cmammi 3anpononosano Hosutl Memoo pearizayii onepayii nionecenus uucia 0o kgaopamy 6 kpunmocucmemi Pabina,
AKUL CHPAMOBAHULL HA CYMMEBe NIOBUWeHHS WEUOKOOI] GUKOHAHHS apPUPMEMUUHUX Onepayili 3a605KU 3ACMOCYBAHHIO CUCTEMU
sanuwkosux knacie (C3K). Ocnogna ides nioxody noaseac y nepexodi 8io mpaouyitinoi nosuyitnoi cucmemu uucienns 0o C3K,
10 00360/IA€ GUKOHYBAMU OOUUCTIEHHS HE3ANEXHCHO OISl KOJICHO20 MOOYIS, BIOKPUBAIOYY MONCIUBOCII O/ NAPANENbHOT 00POOKU
Oanux. Taxuil nioxio cymmeso giopisHAEMbCS 810 KIACUYHUX MeMOOIs, AKI ONePyIOmb BeIUKUMY YUCIAMY NOCTIO08HO Ma 0OMe-
Jceri HeobXionicmio 00pobKU nepenocy po3padie, wjo nideuwye uacogy ckiaduicms onepayitl. Buxopucmanns C3K doszeonse
YCyHymu yetl Hedomik, 3a0e3neuyiouy 3HauHe CKOpOYeHHs 0OYUCTIOBATLHO2O HACY.

Y pobomi pospobneno mamemamuury modens muodxcerns 06ox uucen y C3K, wo 6azyemuvcs Ha 6ukopucmanti Kooy mao-
JUYH020 MHOJICeHHA. Modenb 8paxosye enacmugocmi cumempii maoauyi MHONCEHHS, o 00360ISE€ 3MEHWUMU 002 HeoOXiOHUX
obuuciens 0o 25 % 6io nosnoi mabnuyi Ha ocnosi yiei modeni 3anponornosano memoo nionecenns uucen 0o kgaopamy ¢ C3K,
AKUL OEMOHCIPYE BUCOKY eqheKmuUeHicmy 011 uucen enuxoi pospaonocmi. Memoo 0036014¢ GUKOHy8amu 00YUCTEHHS He3d-
JLeIICHO NO KOJICHOMY MOOYIIO, WO POOUMD 11020 RPUOAMHUM OJsL ARAPAMHOT peanizayil.

IIposedenuii nopisHanbHULL AHALI3 NOKA3AG, WO 3aNPONOHOBAHUL NIOXIO 3abe3neyye icmomue NPUCKOPEHHS 0OYUCTEeHD.
071 32-po3psaonux onepandig wsuokodis spocmac y 2048 pasis, a ons 64-po3psaonux onepandie — 0o 8192 pasis y nopignanni
3 MpaouyiiHumu Memooamu no3uyitinoi cucmemu yucienus. Lle ceiouums npo eucoxy epexmusnicmo euxopucmanins C3K
¥ kpunmocucmenmi Pabina ma 0emoncmpye npakmuyny Kopucno 0ns BUCOKONPOOYKMUBHUX KPUNMOPADIYHUX cucmeM, OpicH-
MOBAHUX HA 0OPOOKY 8ENUKUX YUCTOBUX NONIB.

Ompumani pe3ynomamu niomeepoxcyoms doyinvHicms 3acmocysanna C3K ons peanizayii onepayiii nionecenns 00 K6a-
opamy ma i0Kpueaionb nepcnekmugu 0 no0aIbuUx 00ciodicens. [lodanbuii nanpamu 6KI0OYaI0Mb PO3POOKY YHIBEPCATbHOL
cmpykmypu mooynvhux obyuciens y C3K 0ns inwux acumempuuHux Kpunmocucmem, onmumizayilo arzopummis s anapamuoi
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peanizayii ma npakmuyry oyiHKy npoOyKmugHOCHI 3anponoHOBAHO20 MeMoOy Y PI3HUX 0OUUCTIOBANLHUX cepedosuwyax. 3acmo-
CYBANHA 3aNPONOHOBANO20 NIOX00Y MOJCe CHIAMU KIIOYOBUM e1eMEHMOM Y CIMBOPEHH] WEUOKUX | HAOTIIHUX KpURMOSpaiuHux
DitleHs, o 8i0n08ioaroms CyuacHuM uMo2am inghopmayitinoi 6enexu ma 0OPOOKU BeTUKUX 00CARI8 DaHUX.

KitrouoBi cnoBa: kpunmocucmema Pabina, cucmema 3anumKo8ux Kiacis, nNionecenHs 00 Keaopamy, nidguuyeHHs: ueUoKo-
0ii, napanenvHi 0OuUCIeHHS.

Problem statement. At the current stage of cryptography development, one of the key areas of research is
improving the efficiency of basic mathematical operations that form the foundation of cryptographic systems [1].
One such system is the Rabin cryptosystem. The Rabin cryptosystem belongs to the class of asymmetric encryption
systems whose security is based on the computational difficulty of residueing large integers [2]. Unlike the RSA
system, where encryption involves exponentiation with an arbitrary exponent, the Rabin cryptosystem uses only the
squaring operation modulo the product of two prime numbers. This property makes it mathematically elegant and
simple to implement, while maintaining a high level of cryptographic strength [3, 4].

For key generation, two large prime numbers p and ¢ are randomly chosen so that they are relatively prime.
Their product n= p-q serves as the public key, while the numbers p and g themselves form the private key, which
must be kept secret. The choice of such parameters ensures the one-way nature of the encryption function — the
inverse transformation is possible only if the residues of n are known [4, 5].

Message encryption consists in transforming the input data block M, which satisfies the condition 0 < M < n,
according to the formula

C = M’modn, (D)

where C is the ciphertext. The encryption process is extremely simple, as it involves only one arithmetic oper-
ation — squaring. At the same time, retrieving the original message M from the known C without knowledge of the
prime residues of the modulus # is practically impossible due to the computational complexity of the factorization
problem [6].

The decryption process involves the use of the secret parameters p and g. At the first stage, the remainders are
computed as follows:

f=Cmodp, s=Cmodg. 2)
Next, it is necessary to find the quadratic roots of the obtained values under the corresponding moduli:
x* = f(mod p), y*=s(modg). 3)

Since each of these equations has two solutions, the total number of possible combinations equals four.
Accordingly, a system of congruences is formed:

{M = x(mod p), {M = x(mod p),

M = y(modg), M =-y(modg), (4)
M =—x(mod p), [M =-x(mod p),
M =y(modq), |M=-y(modg).

For each of these systems, the corresponding value of M is computed using the Chinese Remainder Theorem
[7]. As a result, four potential solutions are obtained, among which only one corresponds to the original message.

However, in the practical implementation of the Rabin cryptosystem, a number of issues arise due to the high
time complexity of arithmetic operations in multi-bit numerical fields. Operations such as multiplication, division,
or squaring in the traditional positional number system require significant CPU resources, especially when process-
ing numbers longer than 1024 bits — the minimum required security level under modern conditions. This creates the
need to search for new approaches to optimizing computations in cryptographic algorithms [8].

One promising direction is the use of the RNS. The application of RNS enables the parallelization of compu-
tations, which is not possible when using a positional number system. As a result, there is no need for carry propaga-
tion, and the basic operations — addition, subtraction, and squaring — can be performed independently and in parallel,
significantly increasing the computational speed of the system [5, 8].

Analysis of recent research and publications. Research on optimizing cryptographic computations using
the RNS has been actively developing in recent years. In particular, work [9] proposed an efficient implementa-
tion of the Montgomery algorithm for modular multiplication in a minimally redundant RNS, which significantly
accelerates reduction operations and reduces overhead for large modular computations. This approach demonstrates
potential applicability to squaring operations characteristic of the Rabin cryptosystem; however, the article does not
directly address the problem of computing square roots.

Another study [10] developed RNS reduction algorithms that take into account properties of quadratic resid-
uosity, which is especially relevant for the Rabin cryptosystem because decryption requires finding quadratic roots.
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The authors propose methods that reduce the number of base multiplications in RNS and optimize computations, yet
the concrete integration of these algorithms into the Rabin scheme has not been implemented to date.

Research presented in [11] introduced the concept of a multi-layer recursive RNS, where large moduli are
decomposed into layers, enabling arithmetic operations on very large numbers to be performed in parallel within
smaller subsystems. This approach can substantially shorten computation time for large numeric fields; however, a
specific adaptation of these algorithms to the Rabin cryptosystem is not described.

In [12], the application of RNS for accelerating modular operations in isogeny-based cryptography at the
hardware level was investigated, demonstrating significant performance gains when working with large numbers.
Nevertheless, that work does not consider squaring operations or the particular requirements of the Rabin crypto-
system.

Additionally, work [13] describes the use of the Residue Number System to implement modular operations in
RSA, which substantially reduces the execution time of large-number computations. Although that research focused
on RSA, its methodology can be adapted to optimize the squaring operation in Rabin, since both systems employ
large moduli and modular arithmetic.

The analysis of existing studies shows that applying RNS to optimize modular computations is a promising
direction: it can accelerate basic operations, reduce complexity, and enable parallel computation. However, direct
application of these methods specifically to the squaring operation in the Rabin cryptosystem has not yet received
sufficient scientific treatment. This gap underlines the relevance of further research and the development of novel
methods for implementing the squaring operation in Rabin using RNS to improve the speed and efficiency of cryp-
tographic processes [14].

The purpose of the article is to develop and analyze the efficiency of a method for implementing the squar-
ing operation in the Rabin cryptosystem using the Residue Number System, which will help reduce computational
complexity and increase the speed of cryptographic processes without compromising the system’s security.

Presentation of the main research material. The squaring operation of a number M is based on multiply-
ing the number M* =M -M. In the RNS, the multiplication of a number M, =(u,,, ..., i, ..., i) by a number
M, =(Uyy, eees By -es My, ) 18 performed by multiplying the corresponding residues p,, and p, modulo the corre-
sponding modulus n, (i =1, k) for independently and in parallel across each of the £ RNS bases [13, 15]. The range
of representable numbers (or the system modulus) is equal to the product of all moduli:

N=n-n,-..on (5)

The multiplication of residues p,, and p, modulo m, can be efficiently implemented using a table-based
method that leverages the symmetry properties of the arithmetic table along its diagonals, rows, and columns.
Thanks to this approach, only 25% of the full table is required for implementing modular multiplication. A table
multiplication code is used for this purpose [15]. Table 1 is constructed with the numerical values of the first residue
1, placed horizontally and the second residue p,, vertically. The cells at the intersections indicate the correspond-
ing results of the modular multiplication p, - p,, (modn,).

This table exhibits symmetry with respect to the diagonals, vertical, and horizontal lines passing between the

numbers (m, _1% and (n; + 1% for an odd m, The symmetry along the left diagonal is determined by the com-

mutativity of the multiplication operation, while the symmetry along the right diagonal is defined by the relation
(M, =y, )(m, =, ) =py, -y, (modm, ). The symmetry with respect to the vertical and horizontal axes is due to the fact
that the sum of multiples of numbers is divisible by n,, i.e.,
Hyi By 1y (ﬂi—uzf)zo(mOdﬂf); (6)
Hyi - By + 1y, (ni - “11’) = O(mOdﬂ,- )

Thus, to reconstruct the entire table, it is sufficient to know only one-eighth of it, which significantly reduces
the size of the table required to implement the multiplication operation.
To achieve this, a special encoding of the residues p,, and p,, is applied, known as the “table multiplication

code” [15-17]. The values of p,, and p,,, within the range [0, (m, _1% can be encoded arbitrarily. The values
within the range [(nf * 1)/2, n, - 1), are encoded according to the rule p,; -p,, +p,, (M, —p,; ) =0(modn,).
To distinguish between the ranges, an index (Table Multiplication Code (TMC)) ¢, (CM) is introduced,

which is defined as follows:
0if0<p, S(ni_%;

6y oG, = (1)
tir MWD/ < <,
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Table for the implementation of the modular multiplication operation

Table 1

Ly © At ) (n-1)
My M b, b, Hai
n-1 n+l
© (0 M(T)'M(O) M(T)'H(O) (-1 (©0)
u(o) (Thei Thy)] 1i 2i 1i 2 Ly Wy
2i
modn, modn,
modm), modm), i
-1
A n-l -l n+l -1 -l
© (U ) [ ) ~ i
W, 2 2 2 2 n-1) 2
aly (M“ Ko ) (Hu Ky (“u My My My
[Ty
modm, modn, modn, modn,
[ At o o ()
(0) 2 2 2 2 2 -1 2
o (Mli My Hi™ oty [STR % My My
(U9
modn, modn, modn, modn,
n-1 n+l
0) (0D ) (e S e ( - | (nfl))
(=1 (“‘i M ) (“1[2 "My [T UEY Wy Mo,
Ha modn, modn,
modn, modm,

The method for determining the result of modular multiplication using the TMC is as follows [15].

If two numbers p,, and p,, are represented in TMC form as p,; = (C“], ,MNI,.), W, = (QM , 11; ) then, to obtain their
product modulo n, , it is sufficient to compute (Eﬁ;)modni in the TMC. The index é: is inverted if p,, and p,,
belong to different ranges, that is, (p,, -1, )modn, = (C“’ ,(;,Tll -;,T;)modnl.) where

C — é;‘/r lfc-’}ll, 75C_,““;
COG G, =6

Based on the general mathematical model (7) — (8) for implementing the multiplication of two residues p,
and p,, modulo 7, using the table method, we synthesize a mathematical model for multiplying two numbers
M, =y oo Wy oo Ly ) @Dd M = (Hy5 e Moy oons Wy, ) 10 the RNS.

The process of table-based implementation of the multiplication operation of two numbers in the residue
number system can be represented as follows [17]:

®)

M=M -M,(modN)=M, =
= {(Hm cees By ooy i ) (K vees gy voes sz)}mOdN =
= {(Hn My )modny, ..., (W, -y ) modm,, .., (Ky, '“2k)m0dnk} =

(G100 )+ (G b Jmodmy, s (G, ot )+ (G, o1y Jmody, . ©)
(Gt ) (G bt Yo 3 = 1G, 1y 115, Jmodm ], ..
LG (11 ) modn, 1, TG (B - b Jmodim, T =
= (s oo s o 11,).

In this case, for an even number 1, :

_ - Hyis Hoi l'fOSMWszSn% >
MoKy = n (10)
N—=Hy; M= Hy lf %<H1[9“2[ Sni_L
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0if 0<p,m, <4

Clll,’c-’llz, = (11)
Lif n%<uli='“2i <n -1
in this case 0< ., gn%.
If n, is an odd number, then:
. —1
-~ Hais Hais !fosuli!MZi Snl 4 >
Hyis Moy = 1 (12)
N~ My M My ifni /2S”uap-2,$1’]i—l,
0if 0<p,n, <V
s = (13)

e+l
llfnl /ZSHII’“ZISTII_I’

in this case 0<p,,,p,, <"V _%.

Thus, the relationships (9) — (13) represent the mathematical model of the process of multiplying two numbers
M, = (W5 e Hys oo By ) @0d M, = (L), ooy oy oo iy ) - Let us now consider the case where the number M needs to
be squared:

M*(modN)=M -M (modN) =
= {(ul, ceos Wy eees )= (R eves Hys ooy uk)}modN = (14)
= {(MI w)modn,, ..., (; - )modm,, ..., (1, 'Hk)mOdle}-

First, we show that for any residue in the RNS, the following mathematical relationship holds [17]:

u; modn, = (1, —,)* modm, (15)

Indeed, the square of the residue p’ can be expressed as p’ =Qn+¥, (0<¥, <n,-1), which means that
p’modn, =¥,. Then, n/—2nu, +p/=n,Mm—2p,+Q,)+¥,.. In this case, (n,”—2n,, +p’)modn, =¥,. Thus, this
relationship holds true for both even and odd values of n,. The analytical expression (15) represents a mathematical
model of the process used to implement p’ modn, in practical computations [18]. The structural diagram of this
operation M*(mod N) is shown in fig. 1. The operation of the device proceeds as follows: a number p, in binary
code is fed to the input and stored in the input register. Then, from the output of the decoder, the number p, in
unary code passes through the corresponding OR logic elements to the input of the encoder, which corresponds to
the value u’ modm, . From the encoder’s output, the obtained value p’ modn, in binary form is sent to the output
register. It is evident that the key element in the technical implementation of the operation p’ modn;, is the correct
coding of the connections between the decoder and the encoder.

Let us consider an example of the practical application of the developed method for exponentiation in the
RNS for the Rabin cryptosystem, with the bases n, =3, n, =5, n,=7, and N=mn,-n,-n,=3-5-7. The range of
code words in the RNS is presented in table 2. The algorithm for implementing the operation of squaring a number
modulo M?*(mod N) for n, =3, n, =5, n, =7, is presented in table 3.

Let us consider examples of squaring numbers using the proposed method. Suppose we need to calculate 7>
In the RNS, this number 7 is represented as M =(1, 2, 0) . In binary code, this value is M =(01,,010,,000,) and is
fed to the inputs of the respective decoders. At the output of the encoders, we obtain M* =(01,,100,,000,) in binary
codes, which corresponds to M* =(1,,,4,,,0,,) in decimal. From table 4, it is seen that (1,4,0) in RNS corresponds
to 49 in the positional number system, i.e., 7°=49, confirming that the result is correct.

Let us determine the time gain when performing the squaring operation in the Rabin cryptographic system as
the ratio between the execution time of the operation in the positional number system and that achieved using the
proposed method in the RNS. It is known that in a positional number system, the execution time of a multiplication
operation is given by ¢, =2c°t where o is the number of binary digits in the operand representation, and t is
the propagation delay of the “OR” logic elements. In the RNS, due to the parallel nature of computations, the time
required for squaring a number is #,,, =t where 7 is again the propagation delay of the “OR” logic elements. Thus,
when using 32-bit operands, the performance gain can be calculated as tPNS/ = 252% = 2'322TT =2048 times.

NS

RI

Similarly, for 64-bit operands, the performance gain is IPA% = 2'64ZTT =8192 times. Therefore, the proposed
RNS

squaring method demonstrates a significant improvement in computational performance, making it highly suitable
for practical implementation in Rabin cryptosystems.
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Fig. 1. Scheme of the technical implementation of the operation A*(mod N)
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Table 2

Table of code words in the RNS with the moduli n, =3,n,=5,n,=7

S R R S P e P I e e e e e e e e e e e P e e R e e e O e P R e P e e e R e T R e T T e e T e e e
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SIS lo|=Slo|l==Slo|=I2ol==2|lc|=|D|c|=|=Dlo|=|D|lo=|=|Dlc|=|D|lo=|=Dlo|=|D|lo==|D|lc=D|lo|=|=|D|o =
__1110000111000011100001110000111000011100001110000111
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EREREEEREEEEEEEEEEEEEEREEEEEEEEEEENEEEREEEEEEEEEEEEEERE R
t|n|olo|~|a ||t |n|o|o|~ || [F v |o|o |~ |||t |n|o ||~ || |d|n|o|o|~|d|a |t |n|o|o|— |||t (v ||~ |||t v o
R I R I R R I e e e e I e e e e I P e e I e e e e e P e P R T e e e P e e e e e T T e e T e e
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Table 3

The algorithm for implementing the operation of squaring a number modulo M’(mod N)

for n,=3,m,=5,n,=7

Value of the Bus number with 2
Value of the modulus | remainder y, thatis | ‘o000 5 Value at the Value u; modn,
n, applied to the inputof | ©  ° encoder input generated at the
the decoder ecoder output encoder output

0102002 0 00 O

3 1,01, 1 01 1

210:102 2 01 1

0,000, 0 000 0

1,=001, 1 001 1

5 2,010, 2 100 4

3,011, 3 100 4

4,,=100, 4 001 1

0,.=000, 0 000 0

1,001, 1 001 1

2,010, 2 100 4

7 3,011, 3 010 )

4, =100, 4 010 2

=101, 5 100 4

6,=110, 6 001 1

Conclusions. In the article research investigates the process of implementing the squaring operation in the
Rabin cryptosystem using the RNS. The proposed method is based on transitioning from the positional number
system to RNS, which enables arithmetic operations to be performed independently for each modulus and ensures
a high level of computational parallelism.

A mathematical model of the process of multiplying two numbers represented in the RNS has been developed
based on the application of the table multiplication code. This approach takes into account the symmetry properties
of the table multiplication, which allows reducing the amount of necessary calculations to 25% of the full table.
Based on the mathematical model of multiplying two numbers in the RNS, a method of squaring numbers in the
RNS has been proposed.

A comparative analysis has shown that the use of RNS provides a significant increase in performance. For
32-bit operands, the acceleration is 2048 times, and for 64-bit operands — up to 8192 times compared to performing
the same operation in a positional number system.

The obtained results confirm the feasibility of applying the Residue Number System in the Rabin crypto-
system for implementing basic arithmetic operations, particularly the squaring operation. The proposed approach
increases the efficiency of cryptographic computations without reducing the system’s security.

Further research should focus on developing a universal modular computation framework in RNS for other
cryptosystems, as well as on the hardware implementation of the proposed method to evaluate its performance under
real operating conditions.
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