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INTELLIGENT LOAD BALANCING IN MICROSERVICE ARCHITECTURE

This paper presents an intelligent method for load balancing in microservice architectures that combines parallel (hedged)
request routing with the Thompson Sampling Multi-Armed Bandit (MAB) algorithm. The goal is to address tail-latency spikes
and performance variability that traditional policies (Round Robin, Least Connections) cannot handle under heterogeneous,
bursty workloads. The proposed architecture comprises a YARP-based API Gateway that executes weighted hedging, an Al load
balancer (FastAPI) that learns routing probabilities from live telemetry, and a Prometheus—Grafana stack providing continuous
feedback for adaptation. The balancer transforms observed metrics (latency percentiles, error rate) into rewards and updates
per-replica posteriors via Thompson Sampling, thereby balancing exploration and exploitation while preventing persistent bias
toward temporarily fast but unstable instances.

We evaluate four strategies—static round-robin (k=1), static hedging (k=2), adaptive MAB hedging (k=2), and adaptive
MAB hedging (k=3). Experiments with up to 1,000 concurrent clients show that adaptive hedging with Thompson Sampling
reduces P99 latency by ~65% and the error rate by =45% versus baseline, with negligible throughput loss and moderate CPU
overhead. Increasing parallelism beyond two replicas yields diminishing returns, confirming that small k is sufficient when
combined with probabilistic weighting and strict idempotency. The findings demonstrate that integrating speculative duplication
with Bayesian decision-making provides a lightweight, cloud-native path to tail-tolerant performance. The solution is modular
and reproducible, and it generalizes to Kubernetes-based deployments and loT/cyber-physical scenarios where real-time,
context-aware coordination and reliability are essential.

Key words: load forecasting, microservice, architecture, cloud computing, distributed system, cloud services, machine
learning, artificial intelligence.

Axcax H. I, Ilenixoe 10. O. Inmenexmyanvhe 6a1aHCy8annsA HABAHMANCEHNA 6 MIKPOCEPBICHII apximeKkmypi

Y cmammi 3anpononoeano inmenexmyansuuii Memoo OANAHCYSAHHS HABAHMAIICEHHA 8 MIKPOCEPBICHUX apXimeKmypax,
W0 NOEOHYE napanenvHy mapupymusayiio 3anumis (hedging) iz bacamopyxum 6anoumom Ha ocrosi sudipku Touncona (Thomp-
son Sampling MAB). Mema nioxody — nodonamu «xeocmogiy s3ampumku (tail latency) ma aminnicms npoOyKmugHOCmi, AKi
He ycysaiomvca mpaouyitinumy norimuxamu (Round Robin, Least Connections) 3a HeOOHOPIOHUX T 8UOYXO8UX HABAHMACEHD.
Apximexmypa cxradaemvces 3i winozy APl na 6asi YARP, wjo suxonye 36ascene Oyonosanna 3anumis, Al-banancysanvruxa
(FastAPI), axuii nHasuae UMOGIpHOCMI MaApuipymu3ayii 3a NOMOYHOW MmeneMempieio, ma MOHIMOPUH206020 cmeky Pro-
metheus—Grafana, wo 3abe3neuye 6esnepepsnuii 360pomuuii 36 130k 011 adanmayii. Cnocmepedicysani Mempuxuy (nepyeHmuni
3AMPUMKY, YACIKA NOMUTOK) NePemeopIoIoNtbCs HA «HA20POOYY, KO OHOBTIOIOMbCS ANOCMEPIOPHI PO3NOOINU Os KOHCHOI
pennixu 3a Thompson Sampling, 3a60aKku womy cucmema 30a1aHCO8YE «OOCTIONCEHHS <> eKCHAYamMayiy ma YHuKae gixcayii
HA MUMYACO80 WBUOKUX, Ajle HeCADITbHUX 8)3NAX.

IIposedeno oyinrosannsa yomupvox cmpameziti: cmamuynuti round-robin (k=1), cmamuunuii hedging (k=2), adanmugnuii
hedging 3 MAB (k=2) ma adanmuenuii hedging 3 MAB (k=3). 3a ymos 0o 1000 napanensnux xiienmie adanmusnuii hedging
3 Thompson Sampling smenwue P99 npubnusno na 65% i vacmxy nomunox — Ha =45% nopignano 3 6a306um eapianmom, He
SHUIICYIOYU NPONYCKHY 30amHichb | aute nomipho nioguugyiouu euxopucmanns CPU. 36inbuwienns k nonao 2 dae minimansHuil
000amkosutl egpexm, wjo niOmMeepoNHCye QOYLIbHICHb «MAT020 k» 3a HAABHOCME UMOBIDHICHUX 842 | 2APAHMIT I0EeMNOMEHMHOCHII.
Pe3synomamu 0eMoHcmpyIonv, wio NOEOHAHHS CNEKYIAMUBHO20 OYONI08AHHS MA OAECIBCLKO20 NPULIHAMMA PillleHb € Ne2KUM i
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XMAPOOPIEHMOBAHUM ULTIAXOM 00 CITIKOT 00 «X60CMi» NPOOYKMUBHOCHI. PiuienHs € MOOYIbHUM | 8iOMBOPIOSAHUM, NPUOAMHUM
00 poseopmanta ¢ Kubernetes, a maxosc do loT/kibepghizuunux cyenapiis, e nompioni adanmueHa KOopouHayis ma 8Ucoxa
HAOIUHICMb ) PearlbHOMY YACi.

Kito40Bi  CIOBA:  npOcHO3YBAHHS HABAHMANCEHHS, MICKDOCEPEIC, ApPXimeKmypd, XMApHi 0OYUCIeHHs, POo3nodineHa
cucmema, XMapHi cepeicy, MAWUHHe HAGUAHHS, WINTYYHUI IHMeLeKn.

Introduction and Problem Formulation. The rapid evolution of distributed and cloud-based systems has
made microservice architectures a dominant paradigm for building scalable, flexible, and fault-tolerant applications.
One of the key challenges in such architectures is adaptive load balancing, which ensures efficient distribution of
requests among service replicas while maintaining low latency, stability, and high throughput.

Traditional algorithms such as Round Robin or Least Connections are static and do not consider real-time
system conditions, contextual factors, or historical performance data. As a result, they may cause resource underuti-
lization, increased response times, or local overloads—issues that become critical under high-load conditions typical
for online services, [oT platforms, and real-time data streams.

To overcome these limitations, intelligent load-balancing mechanisms have emerged, integrating probabilis-
tic models, reinforcement learning, and Bayesian inference to optimize routing decisions dynamically. This study
proposes and experimentally evaluates a method for intelligent load balancing in microservice architectures that
combines parallel (hedged) request routing with the Thompson Sampling algorithm. The approach adapts to chang-
ing workload patterns, predicts optimal routing paths based on live performance metrics, and effectively reduces tail
latency under fluctuating load conditions.

Beyond improving computational performance, the proposed model forms the infrastructural foundation for
subsequent research by the authors on Al-driven IoT and environmental control systems, such as adaptive lighting
and microclimate regulation in smart buildings and city farms. In these systems, microservice-based IoT infra-
structures, edge devices, and neural network controllers apply similar adaptive balancing principles to coordinate
sensing, prediction, and actuation in real time.

Therefore, the research and development of intelligent, adaptive load-balancing algorithms in microservice
architectures represent a crucial and practically significant direction, addressing modern challenges of distributed
computing, real-time analytics, and cloud—edge integration.

Review of Existing Solutions. Microservice architectures consist of numerous independently deployable
services operating in parallel; hence, load balancing is vital for scalability and fault tolerance [1]. Classic static
methods, such as Round Robin or Random, evenly distribute requests but ignore instance state (load, latency), often
directing traffic to slow or overloaded replicas and increasing response time [2].

Modern dynamic policies adapt routing based on live metrics and request context. Common approaches
include Least Connections / Least Requests, often implemented via the power of two choices, Weighted Response
Time, and EWMA smoothing to emphasize recent latency trends [2], [3]. Production meshes such as Envoy/Istio and
Linkerd further enhance reliability through outlier detection, circuit breaking, adaptive retries, and locality-aware
routing that minimizes cross-zone RTT.

A recent research direction introduces machine learning—based balancing, using predictive models or rein-
forcement learning to optimize routing under fluctuating workloads. Although such models show significant latency
reductions, their adoption in production remains limited due to data and stability constraints [3]. In practice, organ-
izations combine dynamic routing with autoscaling to balance load across available instances efficiently.

Tail Latency Mitigation. Long-tail delays (p95/p99) critically affect user experience. Parallel or hedged
requests mitigate this by sending a duplicate of an idempotent call to another replica and returning the first response.
Google popularized this technique, triggering duplicates only when the initial request exceeds the p95 threshold,
reducing p99 latency (e.g., 1800 — 74 ms) with minimal traffic overhead (=2—5%) [4]. This strategy is now inte-
grated into gRPC, Bigtable, and DynamoDB.

Best practices include hedging only idempotent operations, applying latency-based triggers, and respecting
time budgets to prevent overload.

Algorithm Spectrum.

— Static: Round Robin, Random, Hash, Weighted RR — simple but state-agnostic.

— Dynamic: Least Requests, Weighted Response, EWMA latency, locality-aware, and outlier-based.

— Learned: ML or RL-based policies for adaptive, predictive routing [3].

In real deployments, these layers combine hierarchically — global (DNS/CDN) — cluster (Kubernetes Service/
Ingress) — mesh (Istio/Linkerd) — optional client logic (hedging). Together, metric-aware balancing, locality, and
selective hedging form the modern foundation for latency-aware, high-throughput microservice systems [1] — [4].

Analysis of recent research and publications. Authors of [5] propose a cloud-native microservice architec-
ture with adaptive load balancing and multi-level fault tolerance built on Spring Cloud (Eureka, Ribbon, Hystrix)
and Docker. The load balancer dynamically routes traffic using live health metrics—CPU, memory, and latency—
rather than static round-robin, improving responsiveness.

Performance evaluation with JMeter and AHP-based QoS analysis showed about 20% higher QoS, through-
put up to 2942 requests/min, and fault recovery under 5 s compared to monolithic LAMP and baseline Spring Cloud
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setups. The adaptive policy efficiently balanced workload and reduced response latency by leveraging real-time
system metrics.

The study [6] presents the Kubernetes Scheduling Extension (KSE), which enables dynamic load balancing
through real-time pod migration. KSE augments the default scheduler by monitoring CPU and memory usage and
redistributing pods via two algorithms: KSE-greedyLB and KSE-refineLB.

Tests on Kubernetes clusters under 32 imbalance scenarios showed that KSE — especially refineLB—reduced
hotspots, improved resource utilization, and maintained stable performance with minimal overhead in balanced
conditions. Limitations include handling of stateful pods and non-CPU resources such as network /0.

The paper [7] presents BLOC, a self-managing, mesh-level load balancer designed to mitigate the incast
problem in microservices caused by client-side routing without global visibility. BLOC leverages feedback signals —
such as backpressure and queue metrics — shared among sidecar proxies to coordinate routing without a central
controller.

Experiments in a Kubernetes testbed showed that BLOC reduced tail-latency variance by 2—4x and cut
99th-percentile latency by ~50%, often outperforming centralized policies by avoiding queue buildup in overloaded
instances.

The study [8] reports a case implementation of load balancing and service discovery for a big data application
using Docker Swarm orchestration. A web data processor was containerized and scaled from one to four instances,
with load metrics monitored via Docker’s APL

Results showed that Swarm’s static load balancer effectively distributed traffic and improved scalability com-
pared to a monolithic setup. However, the authors noted security, overhead, and portability trade-offs, with scalabil-
ity testing limited to small-scale (4-instance) deployments and plans for multi-cloud expansion.

The paper [9] presents an adaptive, latency-aware load balancing algorithm for microservice chains that min-
imizes end-to-end delay by computing a Load Balance Indicator (LBI) based on real-time CPU and memory usage.
The algorithm also reduces inter-node communication by co-locating dependent services.

Implemented with Netflix Zuul and Eureka on Google Cloud, the approach was benchmarked against round-
robin and least-connections methods. Results showed lower latency, higher throughput, and fairer resource use,
though performance gains decreased under extreme loads due to decision overhead. Future improvements include
ML-based prediction and broader QoS integration.

Building on prior research in intelligent microclimate and lighting control, this study formalizes the core
mechanism of dynamic load distribution essential for scalable and fault-tolerant intelligent systems. Its main goal
is to develop and validate an adaptive load balancing method combining parallel (hedged) request routing with the
Thompson Sampling Multi-Armed Bandit (MAB) algorithm.

The proposed model overcomes the limits of static balancing by enabling self-adaptive microservices that
optimize traffic flow and reduce tail latency under variable workloads. It introduces an integrated Al-driven archi-
tecture combining a cloud-native API Gateway, intelligent load balancer, and Prometheus—Grafana monitoring
stack for continuous feedback and real-time learning.

Beyond microservice optimization, the approach lays a methodological foundation for Al-driven IoT and
cyber-physical systems, where probabilistic decision-making and adaptive coordination can enhance intelligence,
stability, and energy efficiency.

Intelligent Load Balancing in Microservice Architectures. In large-scale microservice environments, over-
all latency is often dominated by a small fraction of extremely slow responses. Traditional algorithms such as Round
Robin or Least Connections cannot mitigate these tail-latency outliers caused by temporary overloads, garbage
collection pauses, or network jitter.

Parallel request routing, also known as request hedging or racing, mitigates tail latency by sending the same
client request to several replicas simultaneously (typically two). The first successful response is returned to the cli-
ent, and all others are cancelled. If the response time of one instance is a random variable T with distribution F(t),
the minimum response among k independent replicas follows Fuin(t) = 1 — (1 — F(t))X. Even k = 2 significantly lowers
expected delay for heavy-tailed latency distributions such as log-normal or Pareto.

This technique acts as latency insurance: when one server stalls, another replica is likely to respond quickly.
It is particularly beneficial for latency-sensitive applications such as trading systems, online games, or real-time ML
inference. Empirical results show that duplicating requests to just two replicas can reduce 99.9th-percentile latency
by an order of magnitude while adding only 2—5% extra traffic.

Hedging must, however, be applied judiciously—only for idempotent operations (e.g., reads or queries). Exces-
sive duplication of expensive or state-changing requests may overload the backend or cause side effects. Effective
implementation follows several rules: keep k small (two or three replicas are sufficient), ensure request idempo-
tency, cancel lagging copies immediately, and log latency metrics to tune thresholds adaptively.

This mechanism is already integrated into major production systems such as Google Spanner and Bigta-
ble (speculative reads), Amazon S3 and DynamoDB SDKs (adaptive retries), gRPC HedgingPolicy, Envoy / Istio
(route-level hedging), and Yandex Search (cross-datacenter racing). These confirm hedging as a mainstream strat-
egy for achieving tail-tolerant performance in distributed architectures.
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Parallel request routing complements adaptive algorithms by exploiting statistical independence between
replicas, thereby reducing extreme response times without significantly affecting the mean latency.

Load balancing algorithms determine how incoming requests are distributed among service instances. They
fall into three main categories: static, dynamic, and intelligent (Al/ML-based).

Static algorithms ignore runtime conditions and work best under stable, uniform workloads:

— Round Robin / Weighted Round Robin — cyclic distribution, optionally accounting for server capacity.

— Hash-based routing — assigns clients to servers via hash functions (e.g., IP or user ID), ensuring session affinity.

Dynamic algorithms adapt to real-time performance indicators:

— Least Connections — selects the instance with the fewest active sessions.

Least Response Time — directs traffic to the lowest-latency server.
Resource-based balancing — considers CPU, RAM, or network load.
Health-based routing — filters out unhealthy instances based on probe results.

Intelligent algorithms leverage machine learning or probabilistic decision-making:

— Multi-Armed Bandit (MAB) — continuously adjusts routing probabilities to balance exploration and exploitation.

— Reinforcement Learning (RL) — agents learn optimal balancing policies from reward signals.

— Predictive Balancing — uses historical and contextual data to forecast load and preempt congestion.

Other specialized techniques include Geo-based Routing (minimizing latency by proximity), Consistent
Hashing (used in caches and databases), and Hedging (parallel requests for tail reduction).

For microservice systems with fluctuating workloads and strict SLAs, dynamic and intelligent algorithms
offer the most reliable performance. By continuously monitoring real-time metrics, they enable adaptive routing
decisions that ensure optimal resource utilization, resilience, and responsiveness.

High-Level Architecture of Intelligent Load Balancing. Figure 1 presents the architecture of a micro-
service-based system implementing intelligent load balancing through parallel request routing (hedging) and a
Multi-Armed Bandit (MAB) model with Thompson Sampling. The system integrates adaptive decision-making,
telemetry feedback, and cloud-native scalability.

| ATLoad Balancer (FastAPT) |
(Prometheus) (sRPC/REST)
Grafana dashboards & ——
experiment traces ‘—| Service Registry |

send hedged’ parallel request (HTTP+dns=/5D)

* ¥

k | APT Gateway Client
¥ l (HTTRZ)

- I:Isnen'ice_&n Other clusters

Fig. 1. High-level architecture of the intelligent load balancing system integrating Al-based routing
(Thompson Sampling MAB) and parallel request hedging in a microservice environment

Incoming client requests are handled by the API Gateway, which distributes traffic among microservice repli-
cas. The gateway retrieves dynamic routing weights from the Al Load Balancer and applies them to select optimal
routes. It also performs parallel (hedged) routing, sending a single request to several replicas (e.g., Service A1 ...
A,) and returning the fastest valid response while cancelling the remaining ones. Available replicas are discovered
through the Service Registry, which maintains metadata on all active services.

The Al Load Balancer (implemented using FastAPI) applies the Thompson Sampling MAB algorithm to learn per-
formance probabilities from historical metrics such as latency and success rate. It continuously updates routing weights
based on real-time feedback and publishes them via a REST/gRPC API (/clusters/weights) consumed by the gateway.

The microservices layer consists of multiple replicas of domain-specific services (e.g., ProductService, Order-
Service). The monitoring layer — Prometheus and Grafana — collects and visualizes performance data, closing the
adaptive feedback loop by supplying the Al balancer with updated telemetry for retraining.

Operational workflow. When a request arrives, the gateway queries the Service Registry for available repli-
cas, fetches dynamic weights from the Al balancer, and executes hedged routing based on these weights. The first
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successful response is returned to the client, and all remaining requests are cancelled. Meanwhile, Prometheus
records response times and resource usage, Grafana visualizes them, and the collected metrics are fed back into the
Al balancer to refine its model — forming a continuous self-optimizing cycle.

This architecture unifies machine learning — based decision logic, adaptive routing, and observability to
achieve high reliability and performance. Request hedging significantly reduces tail latency (99th/99.9th percen-
tiles) by probabilistically minimizing the impact of slow replicas, while the Al load balancer adapts in real time to
changes in workload and infrastructure conditions.

The gateway, built on YARP (.NET), supports hot configuration reloads, passive health monitoring, and
plugin extensions for intelligent routing and hedging. The monitoring stack (Prometheus + Grafana) serves both
operational and analytical roles — enabling real-time visualization and continuous model improvement.

Overall, this design provides a scalable, fault-tolerant, and self-adaptive foundation for latency-sensitive sys-
tems such as streaming services, multiplayer platforms, and ML inference pipelines.

Thompson Sampling Algorithm. The proposed intelligent load balancer applies the Thompson Sampling
algorithm — a Bayesian method widely used for decision-making under uncertainty (Figure 2). It enables the system
to adaptively select the most efficient route (or microservice replica) based on probabilistic performance estimates
derived from real-time feedback.

In this context, each action (or arm) represents a candidate service instance, and each reward reflects its
observed performance — such as low latency or successful completion of a request. Thompson Sampling maintains
a probabilistic belief model about each instance’s effectiveness and updates it after every interaction.

Start

|

Initialization for each arm 1:
=1 =1

|

Wait for next client request (next iteration)

For each arm 1 sample a random
value 8; ~ Beta(as, ;)

}

Select arm §

with the highest 8;

!

Execute action
send request to server §

Continuous
£.5., Fesponse time

Receive reward 1.
binary or contimious?

Binary 01

h

Update Betac,, [ Update parameters of the corresponding
oj=ot 1 conjugate prior
Bi=Bi+(1-1) e.g., Normal-Gamma

Fig. 2. Flowchart of the Thompson Sampling algorithm for adaptive decision-making in an intelligent load balancing

Initially, each arm is assigned a Beta(ai, Bi) prior distribution representing success and failure counts (o = 1,
Bi = 1). For each new request, the algorithm samples a random value 6; from each Beta distribution and selects the
arm with the highest 6;, corresponding to the most promising route at that moment.
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After receiving the response, the model updates its parameters as follows:

oc, «=oc, 7,
, 6]
B, < B, +A-r)
where 7, is the observed reward normalized between 0 and 1 (for example, reward = ;
latency +1

Over time, this process continuously refines the posterior distributions, balancing exploration (trying new
routes) and exploitation (favoring known optimal ones).

In microservice environments, this mechanism allows the load balancer to dynamically learn which replicas
deliver the best performance under current conditions. When latency, load, or network state fluctuates, Thompson
Sampling automatically adjusts routing probabilities — redirecting traffic toward faster instances while still occa-
sionally probing alternatives to detect recovery or changes.

This probabilistic decision-making ensures stable adaptation without the risk of deterministic overfitting com-
mon in static policies. It efficiently minimizes response time variance and avoids local overloads by distributing
requests according to evolving performance confidence.

Through continuous feedback from system telemetry (via Prometheus and Grafana), the algorithm updates
its beliefs in real time, forming a self-learning loop that sustains optimal routing across diverse workload scenarios.

Implementation and Experiment Setup. The prototype of the intelligent load-balancing system was imple-
mented using a cloud-native microservice architecture composed of modular components integrated via Docker.
The system includes:

— the API Gateway (YARP,.NET),

—the Al Load Balancer (FastAPI, Python), and

— several replicated microservices simulating heterogeneous workloads.

Telemetry is collected via Prometheus, and performance visualization is handled through Grafana.

The API Gateway performs weighted parallel routing (hedging) and communicates with the Al Load Balancer
through a REST interface (/clusters/weights).

The Al Load Balancer applies the Thompson Sampling Multi-Armed Bandit algorithm, learning optimal
routing probabilities based on observed response metrics. Each update cycle integrates aggregated latency and error
statistics, enabling adaptive rebalancing in real time.

To ensure reproducibility, all services were containerized and deployed using Docker Compose on a host
machine (Intel 17, 16 GB RAM, Ubuntu 22.04). The load generation was conducted with wrk and k6, simulating up
to 1,000 concurrent clients issuing HTTP requests at variable rates.

Four routing strategies were evaluated:

V1: Static Round-Robin (baseline, single request per cycle, k = 1)

V2: Static Hedging (two replicas, k = 2, equal weights)

V3: Adaptive Hedging (two replicas, k = 2, Thompson Sampling—based weights)

V4: Adaptive Hedging (three replicas, k = 3, Thompson Sampling—based weights)

Each experiment was executed for 10 minutes under steady load, followed by a 2-minute cooling interval.
Metrics were collected at 1-second granularity, including latency percentiles (P50, P95, P99), throughput (req/s),
error rate, and CPU utilization.

Performance monitoring relied on Prometheus metrics:

http_request_duration_seconds, http_requests_total, and process_cpu_seconds_total.

Grafana dashboards were configured to display latency histograms and dynamic weight convergence curves
from the Al balancer.

This setup enabled both quantitative evaluation and visual analysis of adaptive routing behavior. The resulting
performance metrics for the four variants are summarized in Table 1.

Results and Analysis. The experimental evaluation compared four routing strategies—static and adaptive—
with different degrees of parallelism (k = 1-3). The results are summarized in Table 1.

Table 1
Experimental results for different routing strategies
Strategy P50 (ms) | P95 (ms) | P99 (ms) | Error Rate (%) | Req/s | CPU (%)
V1: Round-Robin (k=1) 60 180 850 2.4 950 75
V2: Static Hedging (k=2) 62 140 410 1.7 940 82
V3: Adaptive Hedging (k=2, MAB) 65 120 290 1.3 930 84
V4: Adaptive Hedging (k=3, MAB) 68 115 270 1.1 920 88
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The baseline Round-Robin (V1) exhibited significant tail latency, with P99 exceeding 800 ms due to unbal-
anced routing under transient load spikes.Introducing parallel request hedging (V2) halved the 99th-percentile
latency, confirming the effectiveness of speculative duplication in mitigating slow responses.

The adaptive MAB-based approach (V3) further reduced P99 latency to 290 ms—over a 60% improvement
relative to the static baseline-while maintaining comparable throughput and slightly lower error rate. The increase
in CPU usage (~9%) reflects the minor computational cost of duplicate request handling and telemetry updates.

Expanding parallelism to k£ = 3 (V4) achieved marginal latency improvement but introduced higher CPU over-
head, indicating diminishing returns beyond two replicas.Overall, V3 provided the best trade-off between respon-
siveness, stability, and resource efficiency.

Figure 3 (Grafana dashboard) illustrates latency percentiles and the convergence of routing weights in the
adaptive models. The weights stabilized after approximately 2—3 minutes, demonstrating that the Thompson Sam-
pling balancer rapidly learned optimal routing probabilities.

These results confirm that integrating parallel request routing with adaptive probabilistic load balancing yields
significant performance gains for microservice systems, especially in latency-sensitive environments.

Latency Percentiles
600 ms

400 ms

200 ms

100ms  \

14:45 14:46 14:47 14:48 14:50 14:55 14:55

Routing Weights

14:45 14:46 14.47 14:48 14:50 14:55 14:55

Fig. 3. Grafana dashboard visualization showing latency percentiles (P50, P95, P99)
and adaptive routing weight convergence for intelligent load balancing

The subsequent section discusses these findings in a broader context—highlighting how the proposed approach
supports scalability, self-adaptation, and robustness across dynamic workloads.

Discussion and Conclusions. The experimental results confirm that integrating parallel (hedged) request
routing with adaptive Al-driven load balancing substantially improves performance in distributed microservice
environments.Compared to traditional static methods, the proposed approach achieved up to a 65% reduction in
tail latency (P99) and a noticeable decrease in error rate while maintaining comparable throughput. These improve-
ments were most pronounced under fluctuating or heterogeneous workloads, demonstrating the system’s ability to
self-adapt to real operating conditions.

From a theoretical perspective, the Thompson Sampling Multi-Armed Bandit (MAB) algorithm proved to
be a robust mechanism for probabilistic decision-making in routing tasks. It effectively balances exploration and
exploitation, allowing the balancer to continuously learn from observed latency metrics and dynamically reallocate
traffic toward faster and more reliable replicas.This probabilistic adaptability distinguishes the proposed solution
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from deterministic rule-based schemes such as Least Connections or Weighted Round Robin, which lack respon-
siveness to transient performance variations.

The parallel request routing (hedging) mechanism complements this adaptivity by mitigating latency outliers
caused by garbage collection pauses, network jitter, or resource contention. Even with only two replicas (k = 2),
hedging significantly reduces long-tail delays without major overhead. When combined with MAB-based adaptive
weighting, the system achieves near-optimal responsiveness while maintaining efficient resource utilization.

Another strength of the proposed architecture lies in its observability and feedback loop. By leveraging Pro-
metheus and Grafana, telemetry data such as latency percentiles, error rates, and routing weight dynamics are con-
tinuously collected and visualized. This enables both operational monitoring and algorithmic refinement, closing
the loop between data collection, analysis, and adaptive decision-making.Such integration of analytics and control
is essential for intelligent cloud systems operating under non-stationary workloads.

In practical terms, the architecture demonstrates that intelligent load balancing can be implemented using
standard, industry-ready technologies: YARP for proxying, FastAPI for Al logic, and Prometheus for monitoring.
This makes the approach reproducible, modular, and easily extensible — suitable for deployment in real-world envi-
ronments such as streaming services, online gaming, or edge—cloud inference pipelines.

From a broader perspective, the presented model contributes to the development of self-adaptive distributed
systems, where computational resources are dynamically orchestrated through machine learning and probabilistic
reasoning. These principles are directly applicable to the authors’ ongoing research on Al-driven environmental
control systems, loT-based smart agriculture, and cyber-physical infrastructure optimization — domains that share
the same challenges of adaptive coordination, latency minimization, and resource efficiency.

In conclusion, the study demonstrates that combining request hedging with Bayesian reinforcement strategies
provides a powerful, lightweight, and generalizable method for achieving tail-tolerant, adaptive load balancing.
Future work will focus on extending this framework toward context-aware and multi-objective optimization, inte-
grating predictive models (e.g., LSTM or graph neural networks) for proactive scaling, and deploying the system in
Kubernetes-based clusters with real-time autoscaling policies.
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