Yu. F. Oleksiichuk

UDC 004.75
DOI https://doi.org/10.32782/2521-6643-2025-2-70.17

Oleksiichuk Yu. F., Candidate of Physical and Mathematical Sciences,
Associate Professor at the Department of Computer Science and
Information Technology

Poltava University of Economics and Trade

ORCID: 0000-0002-0585-3307

DESIGN AND IMPLEMENTATION OF A CHATBOT FOR PROSPECTIVE STUDENTS

This paper addresses the pressing issue of digitalizing communication processes in higher education, focusing on the
development and implementation of an intelligent chat-bot designed to facilitate interaction with prospective students of the
Computer Science educational program. In the context of increasing competition among higher education institutions and the
growing need to provide year-round informational support for applicants, the study substantiates the feasibility of employing the
Telegram messenger as a platform for automated consultation.

The paper analyzes the key shortcomings of traditional communication channels with potential applicants, including their
temporal and geographical constraints, fragmentation of information across different web resources, and the excessive workload
imposed on admission office staff and academic personnel.

The software solution was developed using the Java programming language and the Spring Boot framework. The system
is designed according to a multilayered architecture that follows the Controller—Service—Repository design pattern, ensuring
modularity, scalability, and ease of maintenance. Integration with the Telegram API is achieved through the Telegram Bots
library, while data persistence is managed via the Oracle Database management system.

The chat-bot's functional capabilities include providing information about the advantages of the educational program and
the university, specific admission requirements for school and college graduates, features of studying at different academic lev-
els, current tuition fees, scholarship and grant opportunities, and the option to subscribe to important updates. The request-han-
dling mechanism, based on user session management and dedicated message handlers, enables a multi-stage interaction flow
with logical transitions between dialogue states.

For administrative management, the system incorporates an interface built with the Swagger library, which provides auto-
matically generated interactive API documentation and supports the execution of test requests directly through a web interface.

The results of the research confirm the effectiveness of the proposed approach in addressing current challenges related
to the digitalization of higher education. The developed system significantly reduces the workload of administrative personnel,
ensures applicants' round-the-clock access to essential information, and improves the overall quality of communication between
the university and prospective students.

Key words: chatbot, telegram, java, spring.

Onexciituyk F0. @. Po3pooxa ma enpoeac)afcennﬂ yam-6oma 014 Maﬁﬁymm'x cmydenmie

Cmamms npucesuena akmyanvhii npooiemi yugposizayii KomyHixayitinux npoyecig y chepi guujoi’ ocsimu, 30Kpema
NUMAHHAM po3p06i<u ma 6NpPOBAOCEHHS. IHMENEKMYANLHO20 Yam-00ma 0 63aEMo0ii 3 Mau6ymHlMu cmyOenmami 0C8imHvoi
npocpamit 3 KOMR'IomepHux Hayx. Y Kowmexcmi 3pocmaiouoi KOHKYpeHyii Mide 3axkaaoamu euwjoi oceimu ma HeooXionocmi
3abesneyenns yinopiunoi ingopmayitinoi niompumxu adimypicumie 0OIPYHMOBYEMbCA OOYLIbHICMb BUKOPUCAHHS Mece-
Hoocepa Telegram sk nnamgopmu 013 ABMOMAMUZ0BAHO20 KOHCYILIYBAHHA.

IIpoananizosano ocHOGHI HeOONIKU MPAOUYIUHUX KAHANIE KOMYHIKAYIl 3 NOMEHYIHUMU BCIYNHUKAMU, 30KpeMa iXHIO
yacosy ma 2eozpagpiuny odmedicenicmo, qbpaemeHmoeaHzcmb inghopmayii na pisHux eeb-pecypcax, a maxodic 3HayHe HABAHMA-
JICEHHSL Ha CRIBPOOIMHUKIG npuuManbHux KOMICItl ma 8UK1adauis.

Pospobneno npoepamue piwienns, sxe peanizosare 3 GUKOPUCMAHHAM MOBU Hpoepamysants Java ma gpeiimeopky Spring
Boot. Cucmema nobydosana 3a 06azamowiapogoio apXimexmyporn 3 3acmocysanusm namepHy npoexmysanus Controller—
Service—Repository, wjo 3abe3neuye MoOyIbHICMb, MACWUMAOOBAHICIb MA 3PYUHICHb CYNPOBOOY NPOSPAMHO20 Npodykmy. Jlis
inmeepayii 3 Telegram API suxopucmano 6ioniomexy Telegram Bots, a 0na 30epicanna danux — cucmemy YApaeninua 6azamu
oanux Oracle Database.

DYHKYIOHATLHI MONCIUBOCTI Uam-00Ma BKIIOUAIOMb HAOAHHSA IH(OpMayii npo nepeeazu 0CeimMHbOI npoepamu ma yHi-
gepcumemy, 0coONUBOCHI] 6CHIYRY NICTS WIKOIU A KOTEOMICY, XAPAKMEPUCIUKU HABYAHHS HA PISHUX OCGIMHIX DIGHAX, AKMYATbHY
8apMIcHb HAGYAHHS, CMUNEHOIANbHI MA 2PAHMOGI NPOSPAMU, A TAKONC MONCIUBICTNG NIONUCKU HA BANICIUBT NOGIOOMLEHHSL.

Mexanizm 0bpobku Kopucmysaybkux 3anumie uepes cucmemy 06poOHUKIE Ma YNPAGIIHHA ceciiMu KOPUCHTYBAYi8 00360~
JIA€ peanizyeamu 6a2amoemanty 63a€Mooito 3 TOSIYHUMY NEPEXOOAMU MINC PIZHUMU CIAHAMU 0Ia02Y.

Jns aominicmpamugrozo ynpaeninus cucmemoro 6nposadiceHo inmepgelic Ha ocHosi bioriomexu Swagger, axutl Hadae
ABMOMAMUYHO 32eHEPOBANY IHMepaKmusHy ookymenmayito APl ma modicnugicme 6UKOHAHHA MeCMOBUX 3anumis desnocepeo-
HbO uepe3 eeh-inmepeelic.

© Yu. F. Oleksiichuk, 2025

Crarra nomuprerbest Ha ymoBax Jinensii CC BY 4.0

162 ISSN 2521-6643 Cucremu ta TexHonorii, Ne 2 (70), 2025



Pesymvmamu 0ocnioocenus niomeepoxcytoms eexmusHicmy 3anponoH08an020 nioxody 01 GUPIUUEHHS AKNTYANbHUX
BUKIUKIG Yughposizayii suwoi ocsimu. Pospobrena cucmema 0036015€ CymmeSo 3HUIUMU HABAHMANCEHHA HA AOMIHICMpPAmug-
HUll nepcoman, 3abe3nequmu adimypicmam yinooo60suti 00cmyn 00 HeoOXioHoi inghopmayii ma NOKpawumu 3a2anbHy AKICMb
KOMYHIKayii Midic yHigepcumemom ma MauOymuimu chiyO0eHmamu.

Kitrouosi cnoBa: uam-bom, telegram, java, spring.

Formulation of the problem. In the contemporary context of digitalization in higher education, universities
are increasingly compelled to transform traditional approaches to communication with prospective applicants. Inter-
action with future students constitutes a continuous process that extends beyond the admission campaign period and
encompasses the full cycle of career guidance activities throughout the year. Particularly in highly competitive fields
such as computer science, cultivating a positive perception of the educational program and institution is essential for
attracting motivated and talented applicants.

Conventional communication channels, including telephone calls to admissions offices, email correspond-
ence, and participation in open house events, are constrained by temporal and geographical limitations. Prospective
students, however, expect timely responses to inquiries concerning admission requirements, program characteris-
tics, the advantages of bachelor’s or master’s degree studies, tuition fees, and scholarship opportunities at any time
of the year, irrespective of office hours or geographical location.

Staff members of admissions offices and academic departments face a considerable informational burden, as
they are required to provide repetitive responses to routine inquiries about the computer science program throughout
the academic year. This situation diminishes the quality of services, increases response times, and results in ineffi-
cient use of human resources that could otherwise be allocated to addressing more complex and non-standard issues.

Additionally, information regarding admission is often fragmented across various web pages and formats,
necessitating significant effort for searching and systematization. Applicants, particularly recent school and college
graduates, may encounter difficulties navigating multiple information sources, which negatively influences their
interaction experience with the university even prior to the admission stage.

The significance of this issue is further heightened by the growing competition among higher education
institutions for talented students. Universities that succeed in providing a high level of service and convenient com-
munication with prospective applicants secure a competitive advantage in the educational market. Consequently,
the implementation of innovative digital interaction tools is becoming indispensable for maintaining institutional
competitiveness and fostering a positive institutional image.

In the contemporary digital environment, chatbots [1] are becoming an increasingly widespread tool of com-
munication among adolescents and students. In particular, a report by Common Sense Media (USA, spring—summer
2025), based on a representative sample of more than 1,000 adolescents aged 13—17, indicates that 72% of American
teenagers have experimented with Al companions (e.g., Character.Al, Replika, ChatGPT), while 52% have become
regular users. Among those who use chatbots regularly, 13% engage with them daily, and 21% interact with them
several times per week [2].

Analysis of recent research and publications. Contemporary Ukrainian youth actively employ a variety of
channels for accessing news and digital content, including Telegram (with chatbots), YouTube, Instagram, Viber,
and traditional television. Despite the documented security risks associated with the use of Telegram during wartime
[3], as long as this messenger remains unrestricted, its popularity and potential applications across diverse domains
must be considered. These include finance [4], education [5-9], the tourism industry [9], complaint management
[10], system monitoring [11-12], and healthcare [13], among others. Telegram bots provide a user-friendly inter-
face, and their underlying logic can be implemented in a wide range of programming languages [14]. Owing to this
simplicity, Telegram is frequently utilized as an interface for the Internet of Things [12, 15-16].

The purpose of this article is the design and implementation of a Telegram bot for prospective applicants to
the Computer Science program. The central idea is to provide only the most essential information in a concise and
accessible form. The key functionalities offered to applicants include:

e obtaining information about the advantages of the educational program and the university;

e learning about the specifics of admission after college and after high school;

e exploring the features of bachelor’s and master’s studies;

e requesting additional information and submitting questions;

e accessing up-to-date information on tuition fees, scholarship and grant opportunities, as well as possibili-
ties for free education;

e subscribing to important announcements and notifications.

Presenting main material. The development of the chatbot was carried out using the Java programming lan-
guage in combination with the Spring Boot framework. Database operations are managed through Spring Data JPA,
while security and access control are ensured by Spring Security. The processing of API requests is implemented
using Spring Web, thus forming a robust and modular backend architecture.

To facilitate integration with the Telegram API, the Telegram Bots library is employed [17]. This library
provides a lightweight yet effective Java framework for seamless interaction with the Telegram Bots API, thereby

ISSN 2521-6643 Cucremu Ta Texnoorii, Ne 2 (70), 2025 163



streamlining the development of intelligent software agents. Its functionality encompasses built-in mechanisms for
token management, the use of the Jetty HTTP client for reliable communication, and extensive documentation that
supports efficient implementation and maintenance.

To store data, the Oracle Database is employed [18-19]. The database is used exclusively for preserving infor-
mation about users who have expressed interest in the specialization. The Entity—Relationship (ER) diagram of the
database is presented in Figure 1.

The Tg_Users table contains information about users obtained via the Telegram API [20]. The key attribute is
userld, which is used for user identification. In addition, the Telegram API provides access to the user’s nickname,
first and last name as registered in Telegram, and information indicating whether the account belongs to a bot. How-
ever, this information is often incomplete or hidden by users.

The Connections table stores records of all interactions with the Telegram bot. These data are applied to ana-
lyze the popularity of the software product.

The Lead table contains information about user activities that require further processing by the department
staff. This includes requests for assistance or specific questions that the chatbot could not resolve.

The Subscriber table stores information about Telegram subscribers. Subscribers receive important updates
regarding university admission directly through Telegram.

123 id

() date_time
123 tg_users_id

lead added_to_attachment_menu
125 id can_join_groups
() date_time can_read_all_group_messages
123 tg_users_id is_bot
AZ question o is_premium
AZ email support_inline_gueries
AZ input_name 123 userid
AZ input_phone A first_mame
A7 lead_type A7 language_code
A7 last_name
AZ USErs_name

subscriber
123 id

is_active
() date_time
123 tg_users_id
M state

Fig. 1. ER diagram of the database

The chatbot logic is implemented within the bot package. The TelegramBot class provides overall control of
the chatbot and extends the TelegramLongPollingBot class from the Telegram Bots library [17]. Specifically, this
class overrides the onUpdateReceived(Update update) method, which is responsible for processing user messages.

164 ISSN 2521-6643 Cucremu ta TexHonorii, Ne 2 (70), 2025



Upon receiving the initial message from a user, an object of the UserSession class is created, which stores informa-
tion regarding the current stage of the user’s interaction.

@Override
public void onUpdateReceived(Update update) {
Long chatId;
User user;
if(update.hasMessage() && update.getMessage().hasText()) {
user = update.getMessage().getFrom();
chatId = update.getMessage().getChatId();
} else if(update.hasCallbackQuery()
&& update.getCallbackQuery().getData()!=null){
user = update.getCallbackQuery().getFrom();
chatId = update.getCallbackQuery().getMessage().getChatId();

}

else {
log.warn("Unexpected update from user. Not message or not text");
return;

¥

UserSession session = userSessionService.getSession(chatId);
userSessionService.saveSession(chatld,session);
UserRequest userRequest = UserRequest
.builder()
.update(update)
.userSession(session)
.chatId(chatId)
.user(user)
.build();
boolean dispatched = dispatcher.dispatch(userRequest);
if (!dispatched) {
if (session.getState().isAllowText()){
textRequestHandler.handle(userRequest);
}else {
log.warn("Unexpected update from user");
}

}

}

At each stage of interaction, the user receives specific textual information along with a set of buttons that
facilitate further navigation. The set of buttons is stage-dependent and is generated through the KeyboardHelper
class. In certain stages, users are also permitted to provide textual input, for example, when submitting a question
or entering their name.

Each stage is associated with a dedicated Handler, responsible for processing user messages, which extends
the abstract class UserRequestHandler.

public abstract class UserRequestHandler {

public abstract boolean isApplicable(UserRequest request);

public abstract void handle(UserRequest dispatchRequest);

public abstract boolean isGlobal();

public boolean isCommand(Update update, String command) {

return (update.hasMessage() && update.getMessage().isCommand()

&& update.getMessage().getText().equals(command))
| | (update.hasCallbackQuery() && update.getCallbackQuery().getData()!=null
&& update.getCallbackQuery().getData().equals(command));

Within a Handler, the content delivered to the user at the current stage is defined, along with the permissible
set of commands. Each command typically triggers a transition to another stage of the interaction.

Structurally, the code of the web service follows a multilayered architecture, with each layer responsi-
ble for a specific functionality. The application implements the Controller—Service—Repository design pattern,
which is widely adopted in modern enterprise software development to ensure modularity, maintainability, and
scalability [21-23].

ISSN 2521-6643 Cucremu Ta Texnoorii, Ne 2 (70), 2025 165



The Controller layer is responsible for handling incoming HTTP requests and mapping them to the corre-
sponding application functionality. Within this layer, input data is validated and converted into domain-specific
structures before being passed further for processing. Controllers serve as the main entry point to the system, ena-
bling interaction between end users and the application logic.

The Service layer encapsulates the core business logic. It coordinates operations, enforces domain rules, and
ensures the correct execution of workflows. Centralizing business functionality in services promotes separation of
concerns, improves system clarity, and simplifies debugging, testing, and future extension.

The Repository layer manages data persistence and retrieval. It abstracts the database operations by providing
a standardized interface for entity management. In this project, repositories rely on Spring Data JPA, which min-
imizes the amount of boilerplate code, automatically generates query implementations, and integrates seamlessly
with relational databases.

The chosen framework, Spring Boot, plays a crucial role in supporting this architecture. It provides built-in
mechanisms for dependency injection, configuration management, and seamless integration of various Spring mod-
ules, such as Spring Web, Spring Data JPA, and Spring Security. This ensures that the multilayered design is not only
logically consistent but also technically efficient, with reduced development overhead and enhanced system reliability.

This layered approach increases modularity and fosters reusability of components, while reducing coupling
between the different parts of the system. As a result, the overall architecture achieves higher robustness, maintain-
ability, and adaptability to future requirements.

For the purpose of informing administrators, the system implements functionality for automatically sending
both statistical reports and user-submitted messages that require attention to designated Telegram addresses. This
ensures that administrators receive timely notifications without the need for manual monitoring of the system.

The delivery of this information is automated through the use of the scheduling mechanism provided by the
Spring Framework, specifically the @Scheduled annotation available in Spring Boot [24]. This annotation allows
developers to define tasks that are executed periodically or at specific times, following either fixed intervals, fixed
delays, or cron expressions. As a result, the application can be configured to send summaries of user activity, error
logs, or other relevant updates at predefined times, thereby facilitating efficient monitoring and decision-making.

One of the key advantages of using the Spring scheduling mechanism is its flexibility. Schedules can be easily
adjusted through configuration parameters, enabling administrators to change the frequency of reporting without mod-
ifying the underlying source code. Moreover, multiple scheduled tasks can coexist within the application, allowing for
the automation of diverse processes, such as data synchronization, report generation, and system health checks.

Another significant feature of the @Scheduled mechanism is its integration with Spring’s dependency injec-
tion and transaction management. This ensures that scheduled tasks operate consistently within the broader appli-
cation context, maintaining access to necessary services, repositories, and security mechanisms. Furthermore, in
production environments, scheduling can be combined with asynchronous execution and thread pool management,
thereby improving system scalability and preventing long-running tasks from blocking critical operations.

Overall, the use of scheduled tasks in Spring Boot provides a reliable and extensible mechanism for automat-
ing routine processes. In the context of this project, it enables administrators to remain informed about user activity
and system status, while simultaneously reducing the workload associated with manual monitoring and repetitive
tasks. This contributes to higher system efficiency, improved responsiveness to user needs, and enhanced overall
quality of service.

An example of the practical implementation of scheduled tasks in this project is illustrated in the code frag-
ment below. The class LeadsScheduler is annotated with @Component, which makes it a managed Spring Bean and
enables its automatic detection during application context initialization. The @Scheduled annotation is applied to
the execute() method, specifying a cron expression that determines the exact schedule of task execution. In this case,
the method is configured to run daily at 14:10.

@Component

@RequiredArgsConstructor

@S1f4j

public class LeadsScheduler {
private final LeadsScheduledService leadsScheduledService;
@Scheduled(cron = "@ 10 14 * * ?")
public void execute() {

try {
leadsScheduledService.sendAdminDailyInfo();

catch (Exception e){
log.error(e.getMessage());
}

166 ISSN 2521-6643 Cucremu ta TexHonorii, Ne 2 (70), 2025



The method delegates the execution logic to the service layer (LeadsScheduledService), which encapsulates
the functionality of preparing and sending daily information to administrators. This approach follows the principles
of layered architecture by separating scheduling responsibilities from business logic. For fault tolerance, exception
handling is incorporated, and errors are logged using the SLF4J logging framework [25]. Such an implementation
ensures both reliability and maintainability of the scheduling mechanism.

For administrative purposes, a dedicated management interface was implemented using the Swagger library
[26]. This tool was selected because it provides the capability to rapidly establish a functional administrative envi-
ronment with minimal configuration effort: integration into the project requires only the inclusion of the library and
a small amount of additional code.

Beyond its ease of integration, Swagger offers significant advantages for system maintenance and oversight.
It provides automatically generated and interactive API documentation, allowing administrators not only to review
available endpoints but also to execute test requests directly through the interface. This functionality simplifies val-
idation, debugging, and monitoring of the system’s behavior in real time.

Although its interface is relatively straightforward, Swagger ensures that administrators can perform all
essential management operations effectively.

Conclusions. The conducted research demonstrates the effectiveness of using digital tools, in particular Tele-
gram chat-bots, for improving communication between higher education institutions and prospective students. The
developed system provides applicants with quick access to essential information about admission requirements,
study opportunities, tuition fees, and scholarship programs, thereby reducing the workload on administrative staff
and enhancing the quality of interaction with the university.

The implemented architecture, based on Java and Spring Boot, ensures a modular and extensible structure of
the software solution. Integration with the Telegram Bots API and the use of supporting technologies such as Spring
Data JPA, Spring Security, and scheduled task execution mechanisms allow for reliable and efficient functionality.
The inclusion of an administrative interface based on Swagger additionally increases system transparency and facil-
itates management processes.

The results confirm that the proposed approach is an effective means of addressing current challenges in the
digitalization of higher education. Future work will focus on expanding system capabilities, including the inte-
gration of Al-based systems into the chat-bot, which would enable more intelligent and personalized interaction
with users. Such improvements are expected to further increase the attractiveness of the educational program and
strengthen the competitive position of the university.

Bibliography:

1. Adamopoulou E., Moussiades L. An overview of chatbot technology. In IFIP international conference on
artificial intelligence applications and innovations (pp. 373—383). Cham: Springer International Publishing. 2020.
https://doi.org/10.1007/978-3-030-49186-4 31

2. Perez S. 72% of U.S. teens have used Al companions, study finds. TechCrunch. 2025. URL: https://
techcrunch.com/2025/07/21/72-of-u-s-teens-have-used-ai-companions-study-finds

3. Balovsyak N. Anonymous and official Telegram channels in Ukraine: analysis of popularity during the hybrid
war. Current Issues of Mass Communication, 37, 2025. P. 30—-42. https://doi.org/10.17721/CIMC.2025.37.30-42

4. Haitan O. M., Snytkal. V. Integrated platforms for automating personal financial accounting
based on chatbots and cloud technologies. Systems and Technologies, 2025, 69(1). P. 58-70. https:/
doi.org/10.32782/2521-6643-2025-1-69.7

5. Olhovska O. V., Chernenko O. O., Ananenko 1. V., Parfonova T. O., Rudenko N. S. Development of a
training simulator for system analysis in the form of a chat-bot. Visnyk of Kherson National Technical University,
(2),2023. P. 196-202. https://doi.org/10.35546/kntu2078-4481.2023.2.27

6. Ismawati D., Prasetyo I. The development of Telegram bot through short story. In Brawijaya International
Conference on Multidisciplinary Sciences and Technology (BICMST 2020) (pp. 209-212). Atlantis Press. https://
doi.org/10.2991/assehr.k.201021.049

7. Rianto R., Rahmatulloh A., Firmansah T. A. Telegram Bot Implementation in Academic Information
Services with The Forward Chaining Method. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 3(2), 2019.
P. 73-78. https://doi.org/10.33395/sinkron.v3i2.10023

8. Aisyah R. N., Istiqgomah D. M., Muchlisin M. Developing e-learning module by using telegram bot on
ICT for ELT course. In 5th International Conference on Arts Language and Culture (ICALC 2020) (pp. 106—111).
Atlantis Press. https://doi.org/10.2991/assehr.k.210226.054

9. Olkhovska O. V., Oleksiichuk Y. F., Koshova O. P., Chernenko O. O., Boiko O. A. Development of a
telegram chat-bot for providing technical support in the field of tourist services. Taurida Scientific Herald. Series:
Technical Sciences, (6), 2024. P. 35—44. https://doi.org/10.32782/tnv-tech.2023.6.5

10. Rosid M. A., Rachmadany A., Multazam M. T., Nandiyanto A. B. D., Abdullah A. G., Widiaty, I. Integration
telegram bot on e-complaint applications in college. In IOP conference series: Materials Science and Engineering
(Vol. 288, No. 1, p. 012159). IOP Publishing. 2018. https://doi.org/10.1088/1757-899X/288/1/012159

ISSN 2521-6643 Cucremu Ta Texnoorii, Ne 2 (70), 2025 167



11. Idhom M., Fauzi A., Alit R., Wahanani H. E. Implementation system telegram bot for monitoring Linux
server. In International conference on science and technology (ICST 2018) (pp. 1089—1093). Atlantis Press. https://
doi.org/10.2991/icst-18.2018.219

12. Bestari D. N., Wibowo A. An IoT-Based Real-Time Weather Monitoring System Using Telegram
Bot and Thingsboard Platform. International Journal of Interactive Mobile Technologies, 17(6). 2023. https://
doi.org/10.3991/ijim.v17i106.34129

13. Djoelianto A. D., Kautsar 1. A., Rosid M. A. Development of Web Service and Telegram Bot for
Location-Based Health Service Information System. Procedia of Engineering and Life Science, 2(2). 2022. https://
doi.org/10.21070/pels.v2i2.1280

14. Modrzyk N. Building telegram bots: develop bots in 12 programming languages using the telegram bot
API. Apress. 2018. https://doi.org/10.1007/978-1-4842-4197-4

15. De Oliveira J. C., Santos D. H., Neto M. P. Chatting with Arduino platform through telegram bot. In 2016
IEEE International Symposium on Consumer Electronics (ISCE) (pp. 131-132). IEEE. https://doi.org/10.1109/
ISCE.2016.7797406

16. Zaid, M. 1. M. A., Abdullah, R., Ismail, S. I., Dzulkefli, N. N. S. N. IoT-based emergency alert system
integrated with telegram bot. In 2023 IEEE International Conference on Automatic Control and Intelligent Systems
(I12CACIS) (pp. 126-131). IEEE. https://doi.org/10.1109/I12CACIS57635.2023.10193550

17. Bermudez, R. TelegramBots (v.6.7.0) [Computer software]. 2023. GitHub. URL: https://github.com/
rubenlagus/TelegramBots

18. Kothuri R., Godfrind A., Beinat E. Pro oracle spatial for oracle database 11g. Apress. 2007. URL: https://
link.springer.com/book/9781430242871

19. Maksymchuk S., Kabak L., Moroz B. Using of the modern data mining technics in customs of Ukraine.
Systems and Technologies, 2(58), 2019. P. 33—49. https://doi.org/10.32836/2521-6643-2019-2-58-2

20. Khaund T., Hussain M. N., Shaik M., Agarwal N. Telegram: Data collection, opportunities and challenges.
In Annual international conference on information management and big data (pp. 513-526). Cham: Springer
International Publishing. 2020. https://doi.org/10.1007/978-3-030-76228-5 37

21. Fowler M. Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing Co.,
Inc., USA. 2002. URL: https://dl.acm.org/doi/abs/10.5555/579257

22. Oleksiichuk Y. F., Olkhovska O. V., Olkhovsky D. M., Orlova D. 1. Design and development of a web
service for generating and sending pdf documents. Systems and Technologies, 65(1), 2023. P. 39—45. https://doi.org
/10.32782/2521-6643-2023.1-65.5

23. Walls C. Spring in action. Simon and Schuster. 2022.

24. Krnac L. Tasks and Scheduling. In: Pivotal Certified Spring Enterprise Integration Specialist Exam.
Apress, Berkeley, CA. 2015. https://doi.org/10.1007/978-1-4842-0793-2 1

25.Juneau J. Exceptions and Logging. In: Java 9 Recipes. Apress, Berkeley, CA. 2017. https://
doi.org/10.1007/978-1-4842-1976-8 9

26. Dos SantosJ. S.,Azevedo L. G., Soares E. F., Thiago R. M., da Silva V. T. Analysis of Tools for REST Contract
Specification in Swagger/OpenAPI. In ICEIS (2) (pp. 201-208). 2020. https://doi.org/10.5220/0009381202010208

References:

1. Adamopoulou, E., & Moussiades, L. (2020, May). An overview of chatbot technology. In IFIP international
conference on artificial intelligence applications and innovations (pp. 373-383). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-030-49186-4 31

2. Perez, S. (2025, July 21). 72% of U.S. teens have used Al companions, study finds. TechCrunch. Retrieved
from: https://techcrunch.com/2025/07/21/72-of-u-s-teens-have-used-ai-companions-study-finds

3. Balovsyak, N. (2025). Anonymous and official Telegram channels in Ukraine: analysis of popularity during
the hybrid war. Current Issues of Mass Communication, 37, 30—42. https://doi.org/10.17721/CIMC.2025.37.30-42

4. Haitan, O. M., & Snytka, 1. V. (2025). Integrated platforms for automating personal financial
accounting based on chatbots and cloud technologies. Systems and Technologies, 69(1), 58-70. https://
doi.org/10.32782/2521-6643-2025-1-69.7

5. Olhovska, O. V., Chernenko, O. O., Ananenko, I. V., Parfonova, T. O., & Rudenko, N. S. (2023).
Development of a training simulator for system analysis in the form of a chat-bot. Visnyk of Kherson National
Technical University, (2), 196-202. https://doi.org/10.35546/kntu2078-4481.2023.2.27

6. Ismawati, D., & Prasetyo, 1. (2020, October). The development of Telegram bot through short story. In
Brawijaya International Conference on Multidisciplinary Sciences and Technology (BICMST 2020) (pp. 209-212).
Atlantis Press. https://doi.org/10.2991/assehr.k.201021.049

7. Rianto, R., Rahmatulloh, A., & Firmansah, T. A. (2019). Telegram Bot Implementation in Academic
Information Services with The Forward Chaining Method. Sinkron : Jurnal Dan Penelitian Teknik Informatika,
3(2), 73-78. https://doi.org/10.33395/sinkron.v3i2.10023

168 ISSN 2521-6643 Cucremu ta TexHonorii, Ne 2 (70), 2025



8. Aisyah, R. N, Istiqgomah, D. M., & Muchlisin, M. (2021, March). Developing e-learning module by using
telegram bot on ICT for ELT course. In 5th International Conference on Arts Language and Culture (ICALC 2020)
(pp. 106—111). Atlantis Press. https://doi.org/10.2991/assehr.k.210226.054

9. Olkhovska, O. V., Oleksiichuk, Y. F., Koshova, O. P., Chernenko, O. O., & Boiko, O. A. (2024). Development
of a telegram chat-bot for providing technical support in the field of tourist services. Taurida Scientific Herald.
Series: Technical Sciences, (6), 35—44. https://doi.org/10.32782/tnv-tech.2023.6.5

10. Rosid, M. A., Rachmadany, A., Multazam, M. T., Nandiyanto, A. B. D., Abdullah, A. G., & Widiaty, 1.
(2018). Integration telegram bot on e-complaint applications in college. In IOP conference series: Materials Science
and Engineering (Vol. 288, No. 1, p. 012159). IOP Publishing. https://doi.org/10.1088/1757-899X/288/1/012159

11. Idhom, M., Fauzi, A., Alit, R., & Wahanani, H. E. (2018, December). Implementation system telegram bot
for monitoring Linux server. In International conference on science and technology (ICST 2018) (pp. 1089—-1093).
Atlantis Press. https://doi.org/10.2991/icst-18.2018.219

12. Bestari, D. N., & Wibowo, A. (2023). An IoT-Based Real-Time Weather Monitoring System Using
Telegram Bot and Thingsboard Platform. International Journal of Interactive Mobile Technologies, 17(6). https://
doi.org/10.3991/ijim.v17i06.34129

13. Djoelianto, A. D., Kautsar, 1. A., & Rosid, M. A. (2022). Development of Web Service and Telegram Bot
for Location-Based Health Service Information System. Procedia of Engineering and Life Science, 2(2). https://
doi.org/10.21070/pels.v2i2.1280

14. Modrzyk, N. (2018). Building telegram bots: develop bots in 12 programming languages using the
telegram bot API. Apress. https://doi.org/10.1007/978-1-4842-4197-4

15. De Oliveira, J. C., Santos, D. H., & Neto, M. P. (2016, September). Chatting with Arduino platform
through telegram bot. In 2016 IEEE International Symposium on Consumer Electronics (ISCE) (pp. 131-132).
IEEE. https://doi.org/10.1109/ISCE.2016.7797406

16. Zaid, M. I. M. A., Abdullah, R., Ismail, S. I., & Dzulkefli, N. N. S. N. (2023, June). loT-based emergency
alert system integrated with telegram bot. In 2023 IEEE International Conference on Automatic Control and
Intelligent Systems (I2CACIS) (pp. 126-131). IEEE. https://doi.org/10.1109/I12CACIS57635.2023.10193550

17. Bermudez, R. (2023). TelegramBots (v.6.7.0) [Computer software]. GitHub. https://github.com/rubenlagus/
TelegramBots

18. Kothuri, R., Godfrind, A., & Beinat, E. (2007). Pro oracle spatial for oracle database 11g. Apress. Retrieved
from: https://link.springer.com/book/9781430242871

19. Maksymchuk, S., Kabak, L., & Moroz, B. (2019). Using of the modern data mining technics in customs
of Ukraine. Systems and Technologies, 2(58), 33—49. https://doi.org/10.32836/2521-6643-2019-2-58-2

20. Khaund, T., Hussain, M. N., Shaik, M., & Agarwal, N. (2020, October). Telegram: Data collection,
opportunities and challenges. In Annual international conference on information management and big data
(pp. 513-526). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-76228-5 37

21. Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing
Co., Inc., USA. Retrieved from: https://dl.acm.org/doi/abs/10.5555/579257

22. Oleksiichuk, Y. F., Olkhovska, O. V., Olkhovsky, D. M., & Orlova, D. 1. (2023). Design and development
of a web service for generating and sending pdf documents. Systems and Technologies, 65(1), 39—45. https://doi.org
/10.32782/2521-6643-2023.1-65.5

23. Walls, C. (2022). Spring in action. Simon and Schuster.

24. Krnac, L. (2015). Tasks and Scheduling. In: Pivotal Certified Spring Enterprise Integration Specialist
Exam. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-0793-2 1

25.Juneau, J. (2017). Exceptions and Logging. In: Java 9 Recipes. Apress, Berkeley, CA. https://
doi.org/10.1007/978-1-4842-1976-8 9

26. Dos Santos, J. S., Azevedo, L. G., Soares, E. F., Thiago, R. M., & da Silva, V. T. (2020). Analysis
of Tools for REST Contract Specification in Swagger/OpenAPI. In ICEIS (2) (pp. 201-208). https://
doi.org/10.5220/0009381202010208

Hara HagxomkeHHs crarti: 21.10.2025
Jara npuiinsTrs crarti: 10.11.2025
Onyo6nikoBano: 30.12.2025

ISSN 2521-6643 Cucremu Ta Texnoorii, Ne 2 (70), 2025 169



