H. A. Dobrovolskyi, S. A. Sgadov

UDC 004.42:37.091.3:004.8
DOI https://doi.org/10.32782/2521-6643-2025-2-70.14

Dobrovolskyi H. A., Candidate of Technical Sciences,
Associate Professor at the Department of Computer Science,
Zaporizhzhia National University

ORCID: 0000-0001-5742-104X

Sgadov S. A., Senior Lecturer at the Department of Computer Systems
and Networks

National University Zaporizhzhia Polytechnic

ORCID: 0000-0002-7994-6530

FORMULATION OF THE INTENTIONALLY GAPPED PROBLEMS
FOR AI-LITERATE LEARNING IN HIGHER EDUCATION

This case study proposes and evaluates a pedagogy for integrating generative Al into software engineering students’
work by turning known model limitations—hallucination, confident completion, and gap-repair—into structured learning oppor-
tunities. Building on evidence that large language models tend to produce fluent but unverifiable answers, the method reframes
assessment as a sequence of activities that require higher-order thinking, process transparency, and oral defense. An instructor
begins with a «seedy programming task and either diagnoses its ambiguities or deliberately introduces controlled gaps to create
a hands-on problem that is underspecified by design. Students then pursue one of two routes: consult an LLM to obtain an ini-
tial solution or independently analyze the prompt to surface missing constraints. In both cases, they must request clarifications,
revise the specification, and substantiate design choices through tests and justifications. Assessment weights the quality of clar-
ification requests, identification and explanation of ambiguities, correctness and coherence of the final solution, and conceptual
mastery demonstrated in a brief viva that probes reasoning rather than code mechanics.

An example—the classic factorial table in C#illustrates how underspecification (range, data type limits, error policy,
output format, and purity) predictably elicits plausible yet defective LLM outputs (e.g., sentinel values that conflate error modes,
mixed 1/O and computation, unreliable overflow checks). Contrasting this seed with a fully specified “corrected” version shows
that explicit constraints improve uniform grading but reduce opportunities to critique Al assumptions. By contrast, an intention-
ally gapped version most effectively compels students to interrogate model completions, formulate testable requirements, and
defend choices orally. The approach thereby promotes responsible Al use (verification over deference), strengthens academic
integrity (process artifacts and viva-based authorship evidence), and targets upper levels of Bloom's taxonomy (analysis, evalu-
ation, and creation). The paper concludes that gapped, critique-centered tasks, coupled with process-oriented submissions and
oral assessment, offer a scalable, human-centered pathway for Al-literate computing education, and motivates empirical studies
comparing learning and integrity outcomes against conventional, fully specified assignments.

Key words: generative Al, intentionally gapped problems, software engineering education, academic integrity, higher-or-
der thinking, Al literacy.

Hooposonvckuii I A., Czadoé C. O. @opmynioeanna 3a60anb i3 HAGMUCHUMU RACMKAMU OJIA WHIYYHOZ0 IHMeNeKny
3 Memoo 6UKOPUCHAHHAM Y euwiil oceimi

Y yvomy docnioocenni npononyemoca ma oyintoemucs nedazoziuni acnekmu inmezpayii 2eHepamugHo20 WmMy4Ho20 iHme-
JIeKNty 8 Kypc pobomy 3 npo2pamHoi iHdiceHepii uisxom nepemeopenis 6i0omux oomedicenb Mooeni — 2aoYuHAYill, BNesHeH020
3a8epieHHs Ma BUNPABIEHHS NPO2ATUH — HA CIPYKMYPOBAHT HABUANbHI Modicausocmi. Crupaiouucs Ha 00KA3u moeo, wo 8enuKi
MOBHI MOOeT, AK NPasuio, 0arms NIAGHI, ale Henepesiperi 6i0N0Biol, Memood NepeocMUCIIOE OYIHIBAHHA K NOCTIO0BHICIY
Oill, Wo 8UMAazaiomsv MUCIEHHA BUW020 NOPAOKY, HPO30POCMI Npoyecy ma ycHoeo 3axucmy. Buknadau nouunac 3 «nowamxo-
8020» NPOPAMHO20 3A80OAHHS MA ADO OIAZHOCHIYE 11020 HEOOHO3HAYHOCH, ADO HABMUCHO 8600UNb KOHMPOIbOBAHI NPOLANUHU,
Woob cmeopumu NPAKmuuHy npobiemy, ka HedoCmamubo cneyugixosana 3a ousatinom. llomiv cmyoenmu oduparons 00uH i3
080X WinAXi8: 36epHymucs 00 macicmpa npasa (LLM), wob ompumamu nouvamiose piutenns, abo camocmiino npoananizysamu
3anum, wjob eusgumu iocymui oomedxicents. B 060x eunaokax oHu NOBUHHI 3aNpoCUmu po3'sCHeHHA, NepesHymu cheyu-
pikayiro ma obIpyHmyeamu eubdip Ou3aliHy 3a 00NOMO20k0 mecmie ma o6IpyHmyeans. OYiHIOBAHHS 8PAX0BYE AKICHb 3anu-
mig Ha po3'ACHeHHs, BUAGTEHHA MA NOACHEHHS HEOOHO3HAUHOCHEN, NPABUNLHICHb MA Y3200JICEHICMb KiHYe8020 pilenHs, ma
KOHYenmyanbhe 80N00IHHS, NPOOEMOHCMPOBAHEe 8 KOPOMKOMY ONUNYBAHHI, sIke OOCTIONCYE MIDKYBAHHS, d He MEXAHIKY KOOY.
TIpuxnao — knacuuna madnuys gaxmopianie ¢ C# — imocmpye, sx Hedocmamus cneyuixayis (0ianason, 0OMexiceHHs Munie
OGHUX, NOTIMUKA NOMUTOK, (hopmam ugody ma uucmoma) nepeddauy8ano sUKIUKAE npasdonodioti, aie depexmui pesyiv-
mamu LLM (nanpuxiad, KOHmponvHi 3HAUEHHS, Wo 3MIULYIOMb PelCUMU NOMUTIOK, 3MIUAHULL 8610/6U10 Ma 0OYUCTIEHHS, HeHA-
Oitini nepegipxu nepenosuenns). IopieHaHHA Yb020 NOUAMKOBO20 HAUEHHS 3 NOGHICIIO BUSHAUEHOIO (BUNDABIEHOI0Y BEPCIEI0

© H. A. Dobrovolskyi, S. A. Sgadov, 2025

Crarrsa nomuproersest Ha ymoBax Jinensii CC BY 4.0

ISSN 2521-6643 Cucremu Ta Texnoorii, Ne 2 (70), 2025 133

NOKA3YE, WO A6HI 0OMEdICEHHS NOKPAWYIOMb DIGHOMIDHE OYiHIOBAHHS, ajle 3MEHULYIOMb MONCIUBOCTI OIS KDUMUKU NPURYIYEHb
HII. Hagnaxu, Hagmucho nponywena 8epcis naiieexmusniuie 3Myuye cmy0enmia 00cuioxcysamu 3ageputenis mooeni, gop-
MYTI068AMU BUMORU, WO NEPEeBIPAIOMbCS, ma 3axuwamu eubdip ycro. Taxum yunom, yeil nioxio cnpusie 8ionosidansHOMy 6UKo-
pucmannio LI (nepesipxa, a ne nosaza), smiynioe axademiuny 0odpouecricmny (apmegaxmu npoyecy ma 00Kasu aemopcmsd
HA OCHOBI VIVa) ma OpicHMyemvCs Ha 6epxHi pieni maxconomii buyma (amanis, oyinka ma cmeopenus). Y cmammi pobumscs
BUCHOBOK, U0 3A80AHHS 3 NPODINAMYU, OPIEHMOBAHT HA KPUMUKY, Y NOEOHAHHI 3 OPIEHMOBAHUMU HA HPOYeC NOOAHHAMU Pobim
ma YCHUM OYIHIOBAHHAM NPONOHYIOMb MACUMAO08AHUI, OPICHMOBANUI HA TIOOUHY WITAX ONA HAGUAHHA KOMN'TOmepHil epa-
momHocmi Ha 6a3i LI ma momugytoms eMnipuuHi 00CIIONCEHHS, W0 NOPIBHIOIMb Pe3VIbMAmy HA84AHHA Ma 000POYecHOCi
3i 36UNAUHUMU, NOBHICINIO BUSHAUEHUMU 3A60AHHAMU.

Kito4oBi croBa: eenepamuerutl wimyynuii inmenexm, HA6MUCHO CHIBOPEHI NACMKY, 0CGIMaA 8 2ay3i NPOSPAMHOT iHJICeHe-
pii, akademiuna 00OpOUeCHICHb, MUCTIEHHS 8ULL020 NOPAOKY, 2PAMONHICIb Y chepi wmyuHo20 IHmeneKmy, YCHe OYiHIOBAHHS.

Formulation of the problem. The proliferation of tools like ChatGPT has instigated a paradigm shift in
academic practices, challenging traditional notions of authorship, learning, and assessment [21].

Student adoption of GenAl has accelerated dramatically. A 2025 study found that almost all students (92%)
now use Al in some form, with 88% having used it for assessments [10]. The most common uses are for explaining
concepts, summarizing articles, and brainstorming ideas [10]. However, a notable percentage of students (18%)
admit to including Al-generated text directly in their work [1]. This widespread use often stems from a desire to
save time and improve work quality.

Despite this high rate of adoption, a significant gap exists in institutional support. While 80% of students agree
their institution has a clear Al policy, only 36% have received support to develop Al skills [10]. Moreover, both
students and faculty express concerns about the risk of academic misconduct and the potential for Al “hallucinations”
or biased results ([1], [11]).

The research objective of this paper is to design modification of tasks and/or solution acceptance rules
used while hands-on by computer science and software engineering students, encouraging the correct Al usage.
That assumes a redesign of both problems and requirements to their solutions. Instead of strict prohibition of Al
we propose to shift accents to fundamental skills like system design, research, complementation, and verification
supported with Al

Analysis of recent research and publications.

The Spectrum of Institutional Responses to Al usage. The response from higher education institutions (HEIs)
has been varied, ranging from outright prohibition to full-scale integration. This diversity in response is indicative of
the complexity surrounding GenAl, which simultaneously offers powerful new tools for research and learning while
posing significant risks to academic integrity.

HEIs have adopted a range of policy stances, often categorized along a continuum from restrictive to
permissive [1]. The most common approaches include:

e Prohibition: This stance bans Al use for all assessed work, often relying on detection tools to enforce
policies. While this approach appears to safeguard academic integrity, it can lead to a «cat-and-mouse» dynamic and
fail to prepare students for a professional world where Al proficiency is increasingly valued [2]:

o Permissive with Disclosure: This model allows or even encourages GenAl use for certain tasks, provided
students transparently disclose their usage. This approach fosters Al literacy and ethical awareness but relies on the
student’s honesty, which can be difficult to verify.

o Contextual or Two-Lane Approach: This is an increasingly popular model. It distinguishes between
«secure» (proctored) assessments where Al is prohibited and “open” (unsupervised) assessments where it is
permitted with proper acknowledgment. This pragmatic approach tailors policy to the specific learning objectives
of a task [21].

Acceptable Usage of Generative Al in Graduate-Level Computer Science Education. General
considerations. Generative artificial intelligence (GenAl) tools such as ChatGPT, GitHub Copilot, and DALL-E
have become increasingly embedded in higher education, offering novel ways to support learning, research, and
creativity. At the core is the principle that Al should help students think, not think for them [3-5]. Students must
retain responsibility for the final outputs and ensure their submissions reflect their understanding. Al tools should
be used to supplement learning. For instance, students might use ChatGPT to brainstorm coding strategies or clarify
algorithmic concepts. However, they must critically assess Al-generated suggestions and refine them based on
personal Judgment [6]. Al- generated content must always be verified. GenAl tools are prone to hallucinations and
inaccuracies. For computer science students, this includes debugging Al-suggested code and validating theoretical
explanations against scholarly or technical sources [6]. Ethical use requires academic honesty. Unauthorized use of
GenAl to generate entire solutions or codebases may constitute academic misconduct [13]. Even when permitted,
copying content verbatim without attribution is inappropriate and may be considered plagiarism. Transparency
is another core principle. Disclosing Al assistance—either in an appendix, footnote, or via prompt logs—enhances
academic integrity [19]. Recent guidelines emphasize that concealing Al involvement may breach research integrity
standards [3]. Privacy must also be respected. Students and researchers should avoid uploading confidential or

134 ISSN 2521-6643 Cucremu ta Texnounorii, Ne 2 (70), 2025

personal data to public GenAl platforms due to lack of control over stored inputs [6]. Lastly, usage should comply
with tool-specific terms of service. Employing GenAl tools to impersonate others, generate fraudulent content, or
violate licensing conditions is unethical and often illegal [16].

Promoting Responsible GenAl Using. Leading institutions now view GenAl not as a threat, but as an
opportunity to enhance academic engagement—provided appropriate guardrails are in place [14]. Several strategies
support the responsible use of GenAl in computer science education. Many universities have issued Al policies that
clarify acceptable and unacceptable use. A study of U.S. institutions found that 63% of top research universities
encourage GenAl use with conditions (McDonald et al., 2024). Policies often provide examples (e.g., using ChatGPT
for idea generation vs. using it to write an entire thesis) and guide faculty in crafting Al-related syllabus statements.
Al literacy encompasses technical competence, critical evaluation, and ethical understanding [10]. Workshops and
training sessions help students and faculty learn about prompt engineering, output evaluation, and bias mitigation.
Some computer science departments now offer courses or modules explicitly focused on effective GenAl use.
Instructors who model appropriate GenAl use help demystify these tools. Demonstrating how to critically engage
with Al-generated code or text sets expectations and encourages reflective practice [14]. Faculty can also structure
assignments that require students to document their Al interactions. Universities are centralizing GenAl resources
through guideline portals, helpdesks, and curated tutorials. Erasmus University, for example, provides students with
documentation on responsible use, citation methods, and data privacy [6]. Academic integrity offices are revising
honor codes to include GenAl-related clauses. Instructors are also integrating Al ethics into the curriculum, covering
fairness, transparency, and accountability. These discussions help students appreciate the societal responsibilities of
Al developers and users [19]. Educators are exploring ways to design assignments that harness GenAl constructively
while maintaining academic rigor. Table 1 summarizes the common problem types that should stimulate human-led
solutions instead of direct Al completion (Table 1.).

Table 1
Types of problems that are less likely to be solved with AI alone
Type Problem name Problem description References
Tvpe 1 Higher-Order Thinking | Assignments that prioritize creativity, synthesis, and critical 5], [121,[17]
yp Tasks evaluation are less amenable to direct Al completion. ’ ’
. By requiring students to submit drafts, Al prompt logs, or
Type 2 Process-Oriented reflective statements, instructors can evaluate not just the [15], [7]

Submissions. product, but the learning process.

Some educators embed Al use into the assignment structure.
Students may be instructed to use ChatGPT to produce an
initial code draft and then improve it, documenting their
changes and rationale.

Assignments that incorporate unique datasets, personal

Assignments Requiring
Type 3 |the Use and Critique of Al
Outputs

(4], [15]

Personalized and

Type 4 Contextualized Prompts experiences, or course-specific material are harder for Al to | [4], [5], [17]
' solve generically.
Presentations, code walkthroughs, and group projects
Tvpe § Oral and Collaborative add layers of accountability. Oral components can verify [4], [121,[23]
yp Assessments. individual understanding, especially in programming-heavy ’ ’
Courses.

In the next sections we will focus on the higher-order thinking tasks and assignments requiring the use and
critique of Al outputs, process-oriented submissions, and oral assessments trying to compose appropriate problems.

Integrating Generative Al into Hands-On Curriculum: A Case Study in Software Engineering and
Computer Science. Contemporary GenAl tools are prone to hallucinations and inaccuracies. For computer science
students, this includes debugging Al-suggested code and validating theoretical explanations against scholarly or
technical sources [6]. In their paper, Varshney et al. [22] highlighted the fact that current LLMs’ training forces them
to produce a fluent answer in all cases. That means, ANN-driven LLMs inherently tend to always respond (using
randomness to choose a plausible completion) rather than abstaining, thus frequently hallucinating in uncommon
or unknown contexts due to their training on general patterns. Therefore, the main idea of the proposed method
is to compose an assessment problem that requires Higher-Order Thinking, Process-Oriented Submissions, the
Use and Critique of Al Outputs which are assessed Orally. The problem composition is based on both the LLMs’
hallucinations and their tendency to implicitly extend the input problem using most probable patches.

Structured Workflow for AI-Supported Problem Analysis and Solution Development. The proposed
instructional framework commences with the formulation of a seed problem, which serves as the foundational
element for subsequent learning activities. The primary participants in this framework are the instructor and the
student, whose interaction is structured to cultivate analytical reasoning, critical evaluation of artificial intelligence

ISSN 2521-6643 Cucremu Ta Texnoorii, Ne 2 (70), 2025 135

(AD) outputs, and metacognitive engagement throughout the problem-solving process. Initially, the instructor
examines the seed problem to identify any ambiguities, inconsistencies, or gaps that may render the problem
underspecified or unsolvable. When the seed problem is overly precise and lacks opportunities for exploration, the
instructor deliberately introduces controlled ambiguities to create a hands-on problem. This intentional modification
transforms the task into an instrument for guided discovery and critical reasoning, encouraging students to engage
actively with the problem definition rather than accepting it uncritically.

Upon receiving the hands-on problem, the student may pursue one of two distinct approaches. The first
involves submitting the problem to a large language model (LLM) to obtain a proposed solution. The second
involves conducting an independent analysis of the problem statement, aimed at identifying conceptual or logical
issues. In cases where ambiguities or contradictions are detected, the student is encouraged to seek clarification
from the instructor. Given that the instructor introduced the ambiguities intentionally, the clarification process
is straightforward and pedagogically productive, enabling the student to develop the capacity to recognize and
articulate problem deficiencies.

Following clarification, the student revises the problem formulation accordingly and proceeds either to
complete the solution or to identify further issues requiring additional clarification. Alternatively, when the student
engages with an LLM-generated solution, the instructor evaluates both the accuracy and the interpretive quality of
the response. Because the instructor is aware of the artificially introduced flaws within the problem, this evaluation
focuses on the student’s understanding of the underlying concepts, the ability to detect inconsistencies, and the
critical appraisal of Al-generated outputs.

The assessment process encompasses several dimensions: (a) the presence and quality of clarification requests,
(b) the student’s ability to identify and explain problem ambiguities, (c) the overall quality and correctness of
the final solution, and (d) the student’s demonstrated conceptual understanding during oral evaluation. Moreover,
comparing LLM-generated solutions for both the initial and the revised hands-on problems provides empirical
insight into the operational characteristics of generative models. Notably, discrepancies between these solutions
reflect the inherent tendency of LLMs to implicitly extend or “repair” incomplete input by generating statistically
probable continuations, even when the initial problem is intentionally unsolvable. This phenomenon underscores
the necessity of human oversight and critical reasoning when interpreting Al-generated responses.

The proposed workflow intentionally fosters higher-order cognitive processes by compelling students to engage
critically with the problem formulation itself. Students are required to ensure that each problem is articulated with
precision, completeness, and logical coherence prior to solution development. Every identified gap, ambiguity, or vague
formulation serves as a prompt for scholarly dialogue between student and instructor, thereby transforming the learning
environment into a collaborative and reflective inquiry process. This interaction not only enhances the instructor’s
awareness of the student’s reasoning trajectory but also reinforces the student’s capacity for rigorous analytical thought.

While the use and critique of Al outputs are encouraged within this framework, such engagement remains
optional rather than prescriptive. The primary educational objective lies in cultivating a deep understanding of both
the problem context and the reasoning underlying the solution—whether human-derived or Al-assisted. To ensure
cognitive and conceptual mastery, oral assessment constitutes an essential component of the workflow. Through
structured discussion, the instructor verifies that the student comprehends, justifies, and can articulate each step of
the reasoning process associated with the hands-on problem. This final evaluative stage consolidates understanding,
promotes academic integrity, and reinforces reflective engagement in Al-assisted problem solving.

Example Hands-on Problem

Seed problem analysis. To illustrate the proposed analytical workflow, let us consider a representative example
of problem evaluation conducted with the assistance of a large language model (LLM), in this case, ChatGPT-5. The
examined prompt requested the model to “read a given problem statement and point to possible logical issues.” The
problem statement under review was as follows [24]:

Using C#, write a function Factorial and a program that uses this function to output a table of factorials.

At first inspection, the task appears straightforward and achievable: students are expected to define a function
named Factorial and to implement a program that repeatedly calls this function to display a table of factorials,
typically for a range of integer values (for instance, from 1 to 10). However, upon closer examination, several
specification issues become evident, indicating that the problem definition lacks sufficient precision for unambiguous
implementation.

The first issue concerns the absence of a defined range for the factorial table. The task does not specify for
which numbers the factorials should be computed—whether the intended range is 1-10, 0—12, or determined by user
input. This omission leads to inconsistent interpretations and prevents uniform assessment of student solutions.

The second issue relates to data type and return type ambiguity. Given that factorial values grow exponentially
with increasing n, the choice of numeric data type significantly affects the correctness and reliability of the program.
The int data type in C# overflows for n>12, while the long type overflows for n=20. For larger values, the use of
Biglnteger becomes necessary. Since the problem statement provides no guidance on the appropriate data type,
students may select incompatible or insufficient representations, resulting in undefined behavior or arithmetic
overflow.

136 ISSN 2521-6643 Cucremu ta TexHonorii, Ne 2 (70), 2025

The third issue involves the absence of error-handling requirements. Specifically, the problem statement
does not indicate how the program should behave when n<0. Because the factorial function is undefined for negative
integers, the lack of explicit handling instructions leaves students uncertain about whether to raise an exception,
return a sentinel value, or simply terminate execution.

The fourth issue pertains to the lack of specification regarding the output format. The task requires the
generation of a “table of factorials” but does not clarify its structure or presentation. It remains unclear whether the
table should include headers, alignment, or formatted spacing, nor does the description indicate whether the results
should be displayed in a console window, written to a file, or presented in a graphical interface.

The fifth issue concerns ambiguity in implementation requirements. The problem does not specify whether
the factorial function should be implemented iteratively or recursively, leaving the approach to student discretion.
While this flexibility can encourage creativity, it also introduces inconsistency in assessment criteria. Moreover,
the task omits the expected input data type—whether int, long, or double—and fails to define the preferred output
mechanism or type.

In summary, although the problem statement initially appears pedagogically sound, a detailed examination
reveals multiple layers of underspecification. That means, even in the current formulation, the seed task can be used
as a starting point of the Al-assisted problem solving when supplemented with the list of requirements for both the
solution process and result. Sending the seed problem as prompt to ChatGPT we get the following code:

using System;
class Program {
static long Factorial(int n) {

if (n < @) {
Console.WriteLine($”Error: Factorial is not defined for ({n}).");
return -1;

}

if (n == 0 || n == 1) return 1;

long result = 1;
for (int 1 = 2; 1 <= n; i++) {
result *= ij;
if (result < 0) {
Console.WriteLine($"Error: Factorial value overflowed for {n}.");
return -1;
}
}
return result;
}
static void Main() {
Console.WriteLine("Factorial Table Generator\n");
int limit;
Console.Write("Enter a non-negative integer limit (e.g. 15): ");
string input = Console.ReadlLine();
if (!int.TryParse(input, out limit) || limit < @) {
Console.WritelLine(
"Invalid input. Please enter a non-negative integer.");
return;
}

Console.WriteLine("\n------------------------------- ")s
Console.WriteLine("| n | n! (Factorial) |");
Console.WritelLine("-----=======------cccmmoooo---- ")s
for (int 1 = @; 1 <= limit; i++) {
long f = Factorial(i);
if (f == -1) break; // stop if overflow or invalid value
Console.WriteLine($"| {i,5} | {f,18} |");
¥

Console.WriteLine("----------------------------~--- ");

It contains a set of implementation decisions that were not specified in the seed task:
1. The program asks the user to input the upper limit of the range of the factorial table but does not ask for a
lower limit.

ISSN 2521-6643 Cucremu Ta Texnoorii, Ne 2 (70), 2025 137

2. The factorial function uses an iterative method to calculate factorial.

3. The factorial function operates with long data types inside.

4. The 2-column table is shown with Console. WriteLine statements.

5. From the mathematical point of view, usage of the return -1 statement to indicate errors is not acceptable
because the I'(x) (gamma function, the generalized factorial) equals to “-1” for x~-0.505 and x~-3.545

Therefore, the provided code does not solve the seed problem because the real requirements can contradict the
list above. Asking a student “Why do you decide to ...” about any list item can reveal the level of critical thinking.

The program code itself has multiple easy-to-see issues too. For example:

— Overflow detection is unreliable because result < 0 can indicate either negative or positive argument values;

— The Factorial function has side effects writing to the console, returning a sentinel (-1), mixing computation
and UL

— The program should prevent calls for input>20 when using long.

These issues are due to multiple dirty implementations of the Factorial function found in the data used to train
LLM.

The seed problem omits range, data type constraints, error handling, output specification, and implementation
requirements. These omissions predictably elicit a spectrum of reasonable but divergent interpretations by both
students and LLMs. Paradoxically, the underspecification both invites and tests Al usage. When submitted to an
LLM, the model will “repair” gaps by assuming defaults (e.g., using long, prompting the user for a limit, iterative
implementation). This creates a natural occasion to coach students on trustworthy Al practices: identify implicit
assumptions in the model’s output, verify claims (e.g., overflow thresholds for long), and separate concerns (pure
function vs I/O). However, without explicit instructional scaffolds, many students will accept the first plausible Al
output as authoritative. Thus, as a stand-alone assignment, the seed problem does not reliably encourage correct Al
usage; as a trigger for a critique-oriented workflow, it is productive.

The problem can support higher-order tasks & critique of Al outputs if the course requires students to
surface ambiguities and critique LLM responses. Otherwise, it tends to devolve into routine coding. Process-
oriented submissions are not inherently required; these must be imposed externally. The openness of the task
furnishes good interview material (e.g., why treat n < 0 this way; what is the safe upper bound for long?), but this
value again depends on added oral assessment design.

In summary, the seed task underperforms on all three aims unless embedded in a structure that compels
clarification, verification, and oral defense. Its chief strength is as a diagnostic substrate for revealing LLM
“coherence-by-completion” and for prompting student-initiated specification repair.

Corrected Seed Problem Statement. To demonstrate the correct problem statement, let’s fill-in all gaps
mentioned above with the prompt:

Please, read a given problem statement and point to possible logical issues. Rewrite this problem statement
to make it logically complete. The problem statement is below:

Using C#, write a function Factorial and a program that uses this function to output a table of factorials.

The rewritten problem became a bit longer but completely clear and undoubtful:

Write a C# program that generates a table of factorials using a separate function named Factorial.

1. Function requirements:

— Define a function Factorial(int n) that returns the factorial of a non-negative integer n.

— If'n is negative, the function should return —1 to indicate invalid input.

— Use an appropriate data type (long) to avoid overflow for values up to 20!.

2. Program requirements:

— In the Main() method, display a table of factorials for all integers from 0 to 20.

— Each line of the table should show the number and its factorial in a clear format, for example:

n n!
0 1
1 1
2 2
3 6

— The program should call the Factorial function for each number and print the results.

3. Implementation note: You may implement Factorial using either recursion or iteration.

Sending the seed problem as a prompt to ChatGPT we get the following C# implementation that fulfills the
revised problem statement:

using System;

class Program {
// Function to calculate the factorial of a non-negative integer
static long Factorial(int n) {

138 ISSN 2521-6643 Cucremu ta TexHonorii, Ne 2 (70), 2025

if (n < @) return -1; // Invalid input
long result = 1;
for (int 1 = 1; 1 <= n; i++) {
result *= i;
}

return result;
¥
// Main method to display the table of factorials
static void Main() {
Console.WriteLine("n\t n!");
Console.WriteLine(new string('-', 20));
for (int 1 = @; 1 <= 20; i++) {
long fact = Factorial(i);
Console.WriteLine($"{i}\t {fact}");

The code has many fewer issues than the solution of the original problem. For example, the program does not
ask the user to input a range of independent variable n because the range is set explicitly in the problem statement;
the iterative method to calculate factorial is one of the allowed methods; long data types in the Factorial function are
acceptable; and table layout and output method are set.

With constraints explicit, an LLM’s answer is more likely to be compliant and less likely to hallucinate
unspecified features. Students can still use Al, but the opportunity to critique the model’s assumptions is diminished,
most model errors will be minor (e.g., style or micro-inefficiencies). Accordingly, the corrected problem encourages
disciplined implementation more than critical Al literacy. To keep Al critique central, instructors should append a
requirement to “submit one LLM-generated version and a human-revised version, highlighting divergences from
the specification and justifying changes.”

Clear criteria enable rubric-based grading and automated tests, but they also make answers more templated
and thus easier to source from Al or peers. Integrity is therefore neutral to slightly at risk unless the assignment
explicitly requires (a) a prompt/verification log, (b) small design justifications (e.g., error signaling alternatives),
and (c) targeted oral questioning.

The problem now emphasizes application and precision rather than analysis and evaluation. It can still reach
higher-order thinking if students must argue for or against the chosen error signal (—1 vs. exceptions), justify data-
type trade-offs, or propose property-based tests for boundary cases.

The statement itself does not require process artifacts; adding a short requirements-to-tests trace and a
reflection on overflow guarantees would align it with the objective.

Because the “trickiness” is reduced, oral assessment should target design rationales (e.g., separation of
concerns, contracts, complexity), turning a straightforward build into a concept-defense conversation.

The corrected statement optimizes fairness and reliability but, without add-ons, underutilizes AI’s pedagogical
value. It is ideal when the emphasis is demonstrably correct implementation, less so when the aim is cultivating Al
critique.

Hands-on Problem Statement. To demonstrate the correct problem statement, let’s fill-in all gaps mentioned
above using the prompt:

Add to a given problem statement carefully hidden gaps that make a correct implementation impossible without
assumptions. The resulting problem statement should be suited for an exam or test. The problem statement is below:
Using C# write a function Factorial and a program that uses this function to output a table of factorials.

Being fed with this prompt, ChatGPT composed the following hands-on problem statement:

Using C#, write a function Factorial that calculates the factorial of a number.

Then write a program that uses this function to output a table of factorials.

The program should:

— Call the Factorial function for all required values.

— Display results in a clear tabular form.

— Ensure correct handling of invalid input values.

The Factorial function should return an appropriate result for all possible inputs, and the program should
print the table up to a suitable limit.

ISSN 2521-6643 Cucremu Ta Texnoorii, Ne 2 (70), 2025 139

The statement above contains hidden gaps / issues not visible to students but intentional:

1. No input range or data type specified—unclear if factorial should work with int, long, or double, or for
negative or non-integer numbers.

2. “All required values” and “suitable limit” are undefined—no explicit range for the table (e.g., 1-10, 0-20, etc.).

3. “Appropriate result for all possible inputs” is impossible, since factorial grows too fast and causes overflow—
but no instruction on how to handle overflow or large values.

4. “Invalid input values” are mentioned but not defined—should that include negatives, fractions, strings, or
numbers exceeding numeric limits?

5. No output format (columns, alignment, etc.) is defined, yet it must be “tabular” and “clear.”

Careful analysis of the generated hands-on problem reveals the following issues:

1. “Up to a suitable limit” is vague—students or developers don’t know how far to compute.

2. Input domain not clearly defined. The formulation “calculates the factorial of a number” doesn’t specify
integer only or non-negative values.

3. No mention of what data type to use for large results.

4. The “ensure correct handling,” doesn’t define what “correct” means.

5. “Display results in a clear tabular form” is subjective.Different implementations may vary; may not match
expected output.

6. The problem statement doesn’t specify whether recursion, iteration, or library functions are allowed.

7. For very large numbers (e.g., 30+), long will overflow.

While the original problem contains 5 issues, the list above contains 7 issues, ensuring that the hands-on
problem cannot be correctly solved “as-is” without detailing. The issues of logic of the hand-on problem are used as
subjects of the oral assessment along with the common question about solution details.

When used as a prompt to ChatGPT the hands-on problem statement generates the specious C# implementation:

using System;
class Program{
// Function to calculate factorial
static long Factorial(int n) {
if (n < 0) {
Console.WriteLine(
$"Error: Factorial is not defined for negative numbers ({n}).");
return -1; // Error code for invalid input
}
long result = 1;
for (int i = 2; 1 <= n; i++) {
try {
checked { result *= i; }
}
catch (OverflowException) {
Console.WriteLine($"Error: Factorial value overflowed for {n}!");
return -1; // Error code for overflow
}
}
return result;
}
static void Main() {
Console.WriteLine("Factorial Table Generator");
Console.WritelLine("=========\n");
Console.Write("Enter a non-negative integer limit (e.g. 20): ");
string input = Console.ReadlLine();

if (lint.TryParse(input, out int limit) || limit < @) {
Console.WriteLine("Invalid input. Enter a non-negative integer.");
return;

}

Console.WriteLine("\N-----------------~--como——- ");

Console.WriteLine("| n | n! (Factorial) [™);

Console.WriteLine("---------- ");

for (int i = @; i <= limit; i++) {
long fact = Factorial(i);

140 ISSN 2521-6643 Cucremu ta Texnounorii, Ne 2 (70), 2025

if (fact == -1) {

Console.WriteLine($"| {i,-4} | Error [");
else {
Console.WritelLine($"| {i,-4} | {fact,-18} |");
}
¥
Console.WritelLine("----=---==-----c---coomoo-- "))

The generated code uses checked to detect overflow; the iterative loop handles 0! and 1! naturally, clear
messages and simple table make output easy-to-read. However, the solution does not explicitly restrict values of
the independent variable: limits of the input variable are not suggested, and the data type is long but could be float
or BigInteger. Handling of errors is not correct because the return -1; statement occurs for both negative n and
overflow.

For very large numbers (20+), long will overflow, but that may be invalid behavior. Displaying results in a
tabular form is still subjective. The solution uses an iterative method, which is completely voluntary and may not
match the environment where the code will be used.

Also the code itself has multiple issues. First, Factorial has mixed concerns because it prints to console and
returns a magic value (-1). The long data type overflows at 21! so the code should show this limitation while asking
for user input. Per-iteration try/catch is slow; it will be better to check limits before the loop.

This formulation is optimal for teaching responsible Al usage. Submitting it to an LLM will produce
plausible but specious code: mixed concerns, ambiguous error signaling, performance-unaware checks, and
overflow pitfalls. Students are thus required to interrogate the model’s completions, elicit clarifications, and
reconcile contradictions. A structured requirement to (a) document the AI’s implicit assumptions, (b) verify them
against constraints the student proposes, and (c) iterate the prompt after clarification turns Al from a shortcut into
an object of study.

Integrity is strengthened by design. Because each cohort (or even each student) can receive slightly varied
ambiguities, turnkey copying is less effective. More importantly, grading can weight (i) the quality of clarification
requests, (ii) specification repair, and (iii) the critique of Al outputs—all of which are difficult to counterfeit without
understanding. The accompanying oral assessment can then target the very gaps the student identified, producing
high-fidelity evidence of authorship and comprehension.

The problem centers higher-order tasks and critique of AI outputs: students must surface domain constraints
(type limits, domain of definition), craft testable requirements, and critique Al behaviors (overflow detection, error
signaling).

The task naturally calls for process artifacts: a clarification log, an assumptions ledger, a mini-requirements
document, and a test plan. These align directly with the learning objective and provide auditability.

The embedded ambiguities supply rich, individualized prompts (e.g., “Defend your chosen range and data
type; what evidence falsified the alternative?”’). Oral examinations become shorter, more focused, and more
equitable because they work from the student’s own documented decisions.

Therefore, the intentionally gapped problem is the strongest vehicle for all three aims. It converts LLM
fallibility into a teachable phenomenon and systematically links process evidence with oral verification.

Discussion. The proposed method of problem formulation aims to focus on encouraging the correct Al usage,
academic integrity, and the following learning objectives: higher-order thinking tasks requiring the use and critique
of Al outputs, process-oriented submissions, and oral assessments trying to compose appropriate problems.

From this point of view, the seed task underperforms on all three aims unless embedded in a structure that
compels clarification, verification, and oral defense. Its chief strength is as a diagnostic substrate for revealing
LLM “coherence-by-completion” and for prompting student-initiated specification repair. The corrected statement
optimizes fairness and reliability but, without add-ons, underutilizes Al’s pedagogical value. It is ideal when the
emphasis is demonstrably correct implementation, less so when the aim is cultivating Al critique. The intentionally
gapped hands-on problem is the strongest vehicle for all three aims. It converts LLM fallibility into a teachable
phenomenon and systematically links process evidence with oral verification.

Also, the provided example highlights a few technical observations:

1. Across all versions, insisting that Factorial be pure (no 1/0, no sentinel conflation) and that error policy be
explicit (exceptions, Result<T,E>, or domain restriction) yields natural, Al-resistant discussion prompts. Embedding
this as a required design choice maintains higher-order focus even in the corrected statement.

2. Requiring students to compare LLM outputs on the original versus revised prompts operationalizes Al
critique. The seed and gapped versions support this directly; the corrected version can re-introduce it by asking
students to “break” the LLM with minimal prompt perturbations and analyze failure modes.

ISSN 2521-6643 Cucremu Ta Texrounorii, Ne 2 (70), 2025 141

3. All versions benefit from mandated artifacts: a prompt/response log with timestamps, a requirements-
to-tests traceability table, and a short “Al reliability note” (claims accepted, claims rejected and evidence). These
artifacts transform detection into prevention.

4. Micro-vivas (5—7 minutes) keyed to a student’s own clarification ledger are efficient and high-signal.
Instructors can rotate through themes: numeric limits and types, error semantics, testing strategy, and refactoring for
purity. The gapped version makes this especially authentic; the seed and corrected versions can still use oral checks
by focusing on design rationales.

For courses prioritizing Al literacy and integrity, adopt the intentionally gapped hands-on problem as the
default, with grading weighted toward clarification quality, Al critique, and test evidence, culminating in a focused
oral defense. For skills check-offs or early labs where uniformity matters, use the corrected seed problem, but
append process requirements (prompt log, test rationale) and a brief comparative critique of at least one LLM output
to retain some higher-order focus. Use the underspecified seed problem chiefly as a diagnostic or as the first stage of
a two-stage assignment that culminates in a student-produced corrected specification and validation suite, thereby
converting initial ambiguity into a structured learning arc.

Conclusions. The integration of generative Al into higher education is an ongoing, complex process. The
initial instinct to ban the technology is giving way to a more nuanced understanding of its potential as a pedagogical
tool. The evidence suggests that the most effective institutional responses are those that are proactive, transparent,
and focused on empowering the academic community with Al literacy (arXiv, 2025). As GenAl continues to evolve,
so must our policies and our curriculum, ensuring that academic integrity is maintained not through prohibition, but
through a thoughtful, human-centered approach to education.

The proposed method of problem formulation aims to focus on encouraging the correct Al usage, academic
integrity, and the following learning objectives: higher-order thinking tasks requiring the use and critique of Al
outputs, process-oriented submissions, and oral assessments trying to compose appropriate problems.

In sum, the gapped formulation best embodies the trio of goals: it requires students to use Al, compels them to
critique its outputs, documents their reasoning as process evidence, and verifies understanding orally. The corrected
formulation secures reliability and fairness but needs added scaffolds to teach Al critique; the raw seed formulation
can be powerful only when embedded in a process-first, viva-verified workflow.

The natural future work can include pedagogical experiments to clarify if students assigned the gapped
problem demonstrate higher performance on Al critique, process quality, and oral explanation than students given
a corrected, fully specified version.

Bibliography:

1. Anara. Al in Higher Education Statistics: The Complete 2025 Report. URL: https://anara.com/blog/ai-in-
education-statistics.

2. Association of Pacific Rim Universities (APRU). Generative Al in Higher Education: Current Practices
and Ways Forward. URL: https://www.apru.org/wp-content/uploads/2025/01/APRU-Generative-Al-in-Higher-
Education-Whitepaper Jan-2025.pdf.

3. arXiv. Adapting University Policies for Generative Al: Opportunities, Challenges, and Policy Solutions in
Higher Education. URL: https://arxiv.org/html1/2506.22231v]1.

4. Attewell S. Exploring Al and Assessment — Avoid, Outrun or Embrace. URL: https://www.jisc.ac.uk.

5. Carden G., Freeman J. (Eds.). Al and the Future of Universities (HEPI Report 193) Oxford: Higher
Education Policy Institute, 2025. URL: https://www.hepi.ac.uk.

6. Erasmus University. Generative Al Usage Guidelines URL: https://www.eur.nl.

7. Forsyth R. ChatGPT: What Should Educators Do Next? Assessment in Higher Education, 2023.
URL: https://assessmentinhe.wordpress.com.

8. Transformations in Academic Work and Faculty Perceptions of Artificial Intelligence in Higher Education
Frontiers in Education. 2025. Vol. 10, Article 1603763. DOI: 10.3389/feduc.2025.1603763. URL: https://www.
frontiersin.org/journals/education/articles/10.3389/feduc.2025.1603763/full.

9. Higher Education Policy Institute (HEPI). Skilling Up for Al: How Higher Education Can Support the
Responsible Adoption of Generative AI- London: HEPI, 2023.

10. Higher Education Policy Institute (HEPI). Student Generative AI Survey 2025. URL: https://www.hepi.
ac.uk/wp-content/uploads/2025/02/HEPI-Kortext-Student-Generative-Al-Survey-2025.pdf.

11. Hostetter R. Ta in. Student and Faculty Perceptions of Generative Artificial Intelligence in Student Writing.
URL.: https://www.researchgate.net/publication/383927117.

12. Jisc. Does ChatGPT Mean the End of the Essay as an Assessment Tool? URL: https://www.jisc.ac.uk.

13. KU Leuven. Responsible Use of Generative Al by Students. URL: https://www.kuleuven.be.

14. McDonald R., Xu J., Thomas P. Generative Al in Higher Education: Analysis of Institutional Policies.
URL: https://arxiv.org/abs/2401.00671.

15. Mollick E. R., Mollick L. New Modes of Learning Enabled by Al Chatbots: Three Methods and
Assignments. URL: https://papers.ssrn.com.

142 ISSN 2521-6643 Cucremu ta Texnounorii, Ne 2 (70), 2025

16. OpenAl. Usage Policies. 2023. URL: https://openai.com/policies/usage-policies.

17. Phipps L. Means, Motive, Opportunity: A Composite Narrative About Academic Misconduct — Jisc
National Centre for Al, 2023. URL: https://nationalcentreforai.jiscinvolve.org.

18. Tillmanns T., Salomao Filho A., Rudra S., Weber P., Dawitz J., Wiersma E., Dudenaite D., Reynolds
S. Mapping Tomorrow’s Teaching and Learning Spaces: A Systematic Review on GenAl in Higher Education.
Trends in Higher Education. —2025. Vol. 4, No. 1. DOI: 10.3390/higheredu4010002. URL: https://doi.org/10.3390/
higheredu4010002.

19. UNESCO. Guidance for Generative Al in Education and Research. URL: https://unesdoc.unesco.org.

20. University of North Carolina. Graduate School Guidance on Al Tools. URL: https://gradschool.unc.edu.

21. University of Sydney. Artificial Intelligence Policy. 2025. URL: https://www.sydney.edu.au/students/
academic-integrity/artificial-intelligence.html.

22. Varshney N., Yao W., Zhang H., Chen J., Yu D. 4 Stitch in Time Saves Nine: Detecting and Mitigating
Hallucinations of LLMs by Validating Low-Confidence Generation. URL: https://arxiv.org/abs/2307.03987.

23. Webb M. [Cited in Jisc, 2023]. URL: https://www.jisc.ac.uk.

24. CranoB C. O. MemoouuHi éxa3ieku 00 8UKOHAHHA 1aOOpamopHux pobim 3 oucyuniinu « OcHosu mex-
nonozii. NET» ona cmydenmie cneyianonocmi 123 Komn tomepha ingicenepis ycix ¢popm naguanms. 3amopikoKs:
HarionanbpHul yHIBepCHTET «3amopi3bka moiTexHika», 2025. 40 c.

References:

1. Anara. (2025). Al in higher education statistics: The complete 2025 report. Retrieved from: https://anara.
com/blog/ai-in-education-statistics

2. Association of Pacific Rim Universities (APRU). (2025). Generative Al in higher education: Current
practices and ways forward. Retrieved from: https://www.apru.org/wp-content/uploads/2025/01/APRU-Generative-
Al-in-Higher-Education-Whitepaper Jan-2025.pdf

3. arXiv. (2025). Adapting university policies for generative Al: Opportunities, challenges, and policy
solutions in higher education. Retrieved from: https://arxiv.org/html1/2506.22231v1

4. Attewell, S. (2024, April 22). Exploring Al and assessment — avoid, outrun or embrace. Retrieved from:
https://www.jisc.ac.uk

5. Carden, G., & Freeman, J. (Eds.). (2025). Al and the future of universities (HEPI Report 193). Higher
Education Policy Institute. Retrieved from: https://www.hepi.ac.uk

6. Erasmus University. (2023). Generative Al usage guidelines. Retrieved from: https://www.eur.nl

7. Forsyth, R. (2023, January 5). ChatGPT: What should educators do next? Assessment in Higher Education.
Retrieved from: https://assessmentinhe.wordpress.com

8. Frontiers. (2025). Transformations in academic work and faculty perceptions of artificial intelligence in
higher education. Frontiers in Education, 10, Article 1603763. https://doi.org/10.3389/feduc.2025.1603763

9. Higher Education Policy Institute (HEPI). (2023). Skilling up for AI: How higher education can support the
responsible adoption of generative AI. Higher Education Policy Institute.

10. Higher Education Policy Institute (HEPI). (2025). Student generative Al survey 2025. Retrieved
from: https://www.hepi.ac.uk/wp-content/uploads/2025/02/HEPI-Kortext-Student-Generative-Al-Survey-2025.pdf

11. Hostetter, R., et al. (2024). Student and faculty perceptions of generative artificial intelligence in student
writing. ResearchGate. Retrieved from: https://www.researchgate.net/publication/383927117

12. Jisc. (2023, January 10). Does ChatGPT mean the end of the essay as an assessment tool? Retrieved
from: https://www.jisc.ac.uk

13. KU Leuven. (2023). Responsible use of generative Al by students. Retrieved from: https://www.kuleuven.
be

14. McDonald, R., Xu, J., & Thomas, P. (2024). Generative Al in higher education: Analysis of institutional
policies. arXiv preprint, arXiv:2401.00671. https://doi.org/10.48550/arXiv.2401.00671

15. Mollick, E. R., & Mollick, L. (2022). New modes of learning enabled by Al chatbots: Three methods and
assignments. Retrieved from: https://papers.ssrn.com

16. Open A. 1. (2023). Usage policies. Retrieved from: https://openai.com/policies/usage-policies

17. Phipps, L. (2023, March 27). Means, motive, opportunity: A composite narrative about academic
misconduct. Jisc National Centre for AI. Retrieved from: https://nationalcentreforai.jiscinvolve.org

18. Tillmanns, T., Salomao Filho, A., Rudra, S., Weber, P., Dawitz, J., Wiersma, E., Dudenaite, D., & Reynolds,
S. (2025). Mapping tomorrow’s teaching and learning spaces. A systematic review on GenAl in higher education.
Trends in Higher Education, 4(1), 2. https://doi.org/10.3390/higheredu4010002

19. UNESCO. (2023). Guidance for generative Al in education and research. Retrieved from: https://unesdoc.
unesco.org

20. University of North Carolina. (2023). Graduate school guidance on Al tools. Retrieved from: https://
gradschool.unc.edu

ISSN 2521-6643 Cucremu Ta Texrounorii, Ne 2 (70), 2025 143

21. University of Sydney. (2025). Artificial intelligence policy. Retrieved from: https://www.sydney.edu.au/
students/academic-integrity/artificial-intelligence.html

22. Varshney, N., Yao, W., Zhang, H., Chen, J., & Yu, D. (2023). 4 stitch in time saves nine: Detecting and
mitigating hallucinations of LLMs by validating low-confidence generation. arXiv preprint, arXiv:2307.03987.
https://doi.org/10.48550/arXiv.2307.03987

23. Webb, M. (2023). /Cited in Jisc, 2023]. Retrieved from: https://www.jisc.ac.uk

24. Cranos, C. O. (2025). Metodychni vkazivky do vykonannia laboratornykh robit z dystsypliny «Osnovy
tekhnolohii. NET» dlia studentiv spetsialnosti 123 Komp ’iuterna inzheneriia usikh form navchannia. Zaporizhzhia:
Natsionalnyi universytet «Zaporizka politekhnika.

Jara HagxomkeHHs crarti: 27.10.2025
[Hara npuitasrrs crarti: 17.11.2025
OmnyomnikoBaHo: 30.12.2025

144 ISSN 2521-6643 Cucremu ta Texnounorii, Ne 2 (70), 2025

