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НЕЙРОННО-КЕРОВАНИЙ ГІБРИДНИЙ МЕТОД ДЛЯ ОПТИМАЛЬНОГО ПОКРИТТЯ 
ТЕРИТОРІЇ ІЗ ОБМЕЖЕННЯМ НА РОЗТАШУВАННЯ

У статті представлено інноваційний підхід до розв’язання задачі максимального покриття території з ура-
хуванням об’єктів довільної форми, їх ротації та наявності заборонених зон для розміщення центрів об’єктів. Ця 
задача формулюється як нелінійна оптимізаційна проблема, де для забезпечення виконання обмежень застосовується 
динамічно налаштовувана штрафна функція, керована нейронною мережею. Для прискорення обчислень використо-
вується сурогатна нейронна мережа, яка апроксимує ресурсомістку цільову функцію, що дозволяє значно зменшити 
час виконання складних геометричних обчислень. Запропонована гібридна стратегія оцінки поєднує точні обчислення 
за допомогою бібліотеки Shapely для обробки геометричних об’єктів із апроксимаціями Монте-Карло, що забезпечує 
баланс між точністю та швидкодією. Алгоритми ройового інтелекту, зокрема оптимізація роєм частинок (PSO), та 
меметичні алгоритми, які поєднують глобальний і локальний пошук, застосовуються для ефективного дослідження 
багатовимірного простору рішень. Адаптивний механізм штрафів, реалізований через нейронну мережу, дозволяє 
автоматично налаштовувати параметри обмежень, уникаючи ручного втручання та підвищуючи стійкість методу 
до змін умов задачі. 

Цей підхід демонструє високу ефективність у задачах із складною геометрією, де традиційні методи зазнають 
труднощів через багатоекстремальний характер цільової функції та обмеження на розміщення. Метод є масштабо-
ваним і може бути адаптований до різних типів об’єктів і конфігурацій заборонених зон, що робить його придатним 
для практичного використання в таких сферах, як телекомунікації (наприклад, оптимальне розташування базових 
станцій), охорона здоров’я (розміщення мобільних медичних пунктів у кризових ситуаціях), екологія (моніторинг лісів 
чи природоохоронних зон) та містобудування (планування інфраструктури з урахуванням зон із обмеженим доступом). 

Перспективи практичного впровадження охоплюють автоматизацію планування в реальному часі, інтегра-
цію з системами геоінформаційного аналізу та подальше вдосконалення за рахунок використання глибоких нейронних 
мереж із активним навчанням для підвищення точності сурогатних моделей. Запропонований підхід відкриває нові 
можливості для оптимізації складних систем із геометричними обмеженнями, забезпечуючи надійність і ефектив-
ність у реальних сценаріях.

Ключові слова: безперервне покриття, довільні форми, ройовий інтелект, нейронні мережі, багатоекстремальна 
оптимізація, сурогатне моделювання, активне навчання.

Havryliuk Ye. А. Neural-driven hybrid method for optimal area coverage with placement constraints
The article proposes a novel methodology for addressing the Maximum Coverage Location Problem (MCLP) in 

continuous spaces, incorporating arbitrarily shaped objects, their rotation, and restricted zones for object centers. The problem 
is formulated as a nonlinear optimization task, where constraints are enforced through a dynamically tuned penalty function 
driven by a neural network. To enhance computational efficiency, a surrogate neural network approximates the computationally 
intensive objective function, significantly reducing processing time.

The proposed hybrid evaluation strategy integrates precise geometric computations using the Shapely library with 
Monte Carlo approximations, achieving an optimal balance between accuracy and computational speed. Swarm intelligence 
algorithms, such as Particle Swarm Optimization (PSO), and memetic algorithms, which combine global exploration with local 
refinement, are employed to navigate the high-dimensional, multi-extremal solution space effectively. 

The adaptive penalty mechanism, powered by a neural network, enables automatic adjustment of constraint parameters, 
eliminating the need for manual tuning and enhancing the robustness of the method across varying problem conditions. This 
approach proves highly effective for complex geometric configurations, where traditional optimization techniques struggle due 
to the multi-extremal nature of the objective function and placement constraints. 

The method is scalable and adaptable to diverse object shapes and restricted zone configurations, making it suitable for 
practical applications in multiple domains, including telecommunications (e.g., optimal placement of base stations), healthcare 
(e.g., deployment of mobile medical units in crisis scenarios), ecology (e.g., sensor placement for environmental monitoring), 
and urban planning (e.g., infrastructure design with restricted access zones). 
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The integration of neural network-based adaptive penalties with geometric optimization provides a robust and efficient 
framework for solving real-world coverage problems. 

Future prospects include real-time optimization integration with geographic information systems, further refinement 
through deep neural networks with active learning, and expansion to dynamic environments with time-varying constraints. This 
approach advances the state-of-the-art in AI-driven optimization, offering a versatile and reliable solution for complex spatial 
planning challenges.

Key words: continuous coverage, arbitrary shapes, swarm intelligence, neural networks, multi-extremal optimization, 
surrogate modeling, active learning.

Постановка проблеми. У сучасному світі задачі оптимального розміщення для забезпечення макси-
мального покриття певної території набувають значного поширення в галузях логістики, містобудування, 
телекомунікацій, екології та систем оборони. Класична задача розміщення з максимальним покриттям 
(Maximum Coverage Location Problem – MCLP) передбачає розміщення обмеженої кількості об’єктів (напри-
клад, базових станцій, складів чи сенсорів) з метою максимізації охопленої площі або кількості обслугову-
ваних точок попиту. Однак реальні умови часто додають складні обмеження, такі як нестандартні форми 
території, об’єктів покриття та заборонені зони для центрів розміщення.

У досліджуваній задачі є територія заданої форми та розміру, яку потрібно покрити за допомогою 
множини різних об’єктів покриття з фіксованою формою та розміром. Параметри розміщення включають 
координати центрів для кожного об’єкта та кут повороту. Метою є максимізація покритої площі території, 
тобто площі об’єднання трансформованих об’єктів після їх позиціонування та ротації. Додатково вводяться 
обмеження: центри об’єктів не можуть розташовуватися в заданих заборонених зонах, кількість яких дорів-
нює k. Важливо, що перетинання об’єктів покриття з забороненими зонами дозволяється, а самі заборонені 
зони можуть бути покриті, якщо це сприяє загальній максимізації площі.

Новизна цієї постановки полягає в поєднанні безперервного простору, геометричних трансформацій 
та часткових заборон (лише для центрів об’єктів). Це відрізняє задачу від традиційних дискретних моделей 
MCLP, де об’єкти розміщуються в фіксованих точках, та від простих геометричних покриттів без гнучкості 
трансформацій. 

Такі обмеження відображають реальні ситуації: при розміщенні антен у телекомунікаціях, коли цен-
три не можуть бути в житлових районах, але сигнал має їх охоплювати; в екології сенсори для моніторингу 
пожеж уникають заборонених зон, але покривають їх; в кризових ситуаціях, коли мобільні медичні підроз-
діли розміщуються в безпечних місцях з максимальним охопленням послуг. Розв’язання таких задач опти-
мізує ресурси, зменшує витрати та підвищує ефективність систем.

Аналіз останніх досліджень і публікацій. Задача розміщення з максимальним покриттям (MCLP), 
запропонована Черчем і Ревелом [1], еволюціонувала від дискретного розміщення об’єктів для максимізації 
покриття точок попиту до складних безперервних моделей, що враховують геометрію та реальні обмеження. 
Ранні огляди, як у Бермана та ін. [2], фіксують цей розвиток, акцентуючи перехід до безперервних просто-
рів, ємностей та невизначеностей, що є ключовими для планарної MCLP з забороненими зонами. Моделі 
безперервного покриття, ініційовані Черчем [3] для планарних задач і розвинені Матізівом та Мюрреєм [4] 
для одиночних об’єктів, закладають основу для об’єктів на основі площ, але часто припускають ідеалізовані 
форми або гладкі функції корисності. Натомість реальні сценарії, як телекомунікації, моніторинг довкілля 
та управління кризами, вимагають гнучкості для нерегулярних форм, заборонених зон та динамічних умов, 
де метаевристики та методи на основі нейронних мереж виявляються ефективними.

Значні досягнення в безперервному покритті включають роботи Кортеса та ін. [5], які розробили роз-
поділений контроль покриття з використанням розбиття Вороного та градієнтних потоків, пов’язуючи про-
сторову щільність з ефективністю сенсорів у робототехніці та мультиагентних системах. Однак їхній підхід 
стикається з негладкими цілями та складними об’єднаннями форм, що наша модель розв’язує через мета
евристики та сурогатне моделювання. Швагер та ін. [6] розширили ці методи на динамічні середовища, але 
обчислювальні вузькі місця зберігаються для високоразмірних багатоекстремальних задач. У [7–10] розгля-
дається безперервне покриття з довільними формами за допомогою інструментів обчислювальної геометрії, 
як Shapely, для точної оцінки та метаевристик для оптимізації, що відповідає потребам практичного засто-
сування в сценаріях з нерегулярною геометрією та забороненими зонами.

Ройовий інтелект та еволюційні алгоритми добре пасують до багатоекстремальних ландшафтів MCLP. 
Кеннеді та Еберхарт [11] ввели оптимізацію роєм частинок (PSO), ціновану за простоту та баланс дослі-
дження-експлуатації, тоді як Сторн і Прайс [12] запропонували диференціальну еволюцію (DE) як стійку 
альтернативу з мінімальними гіперпараметрами. Оптимізація мурашиними колоніями (ACO), розроблена 
Доріго та Штютцле [13], вирізняється в комбінаторних підзадачах, як упорядкування об’єктів, і часто вбудо-
вується в меметичні схеми, як досліджено Нері та Котта [14]. Янг [15] надає всебічний синтез алгоритмів, 
натхненних природою, підкреслюючи їх адаптивність до геометричної оптимізації, тоді як Мірджалілі та 
ін. [16] розвивають багатоцільові варіанти PSO для складних задач. Меметичні алгоритми, що поєднують 
глобальний пошук з локальним уточненням, як BFGS, детально описані Моліна та ін. [17], пропонують 
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рамки для гібридної оптимізації, особливо ефективні для задач з важкою геометрією. Ці методи лежать 
в основі нашого підходу, що гібридизує PSO та меметичні алгоритми з сурогатними нейронними мережами 
для ефективної навігації високорозмірними просторами.

Обчислювальна вартість геометричних операцій, як об’єднання та перетин для розрахунку площ, 
вимагає сурогатного моделювання. Традиційні методи, як Крігінг та радіальні базисні функції (Форрестер 
та ін. [18]), покладаються на адаптивне семплінг, але сучасні тенденції віддають перевагу моделям глибокого 
навчання. Захір та ін. [19] ввели Deep Sets для інваріантних до перестановок входів, ідеальних для змінних 
множин об’єктів у задачах покриття. Активне навчання, описане Джін та ін. [20], посилює стійкість сурога-
тів через періодичні точні оцінки, тоді як фізико-інформовані нейронні мережі (Раїссі та ін. [21]) підтриму-
ють багатофідельне навчання для інженерних застосувань. Гудфеллоу та ін. [22] надають фундаментальну 
рамку для нейронних мереж в оптимізації, а Чжан та ін. [23] підкреслюють їх інтеграцію з метаевристиками 
для глобального пошуку. Роботи [7, 8] просувають цю сферу, використовуючи інструменти як Shapely для 
точних обчислень та досягаючи значних прискорень через апроксимацію.

Практичні застосування MCLP охоплюють різноманітні домени. У бездротових сенсорних мережах 
(WSN) безперервні формулювання оптимізують покриття площі, точок та бар’єрів з обмеженнями на зв’я-
зок та термін служби, як оглянуто Акілдізом та ін. [24]. Планування траєкторій покриття безпілотними 
апаратами (UAV/UGV/USV), досліджене Лоу та ін. [25], покращує ефективність шляхів для 2D/3D рельєфів, 
тоді як моніторинг довкілля та точне землеробство виграють від оптимальних розміщень сенсорів над нере-
гулярними ділянками, як зазначено Чосетом [26]. Промислові інспекції, включаючи фарбування та неруй-
нівний контроль, використовують роботизоване покриття для довільних форм [27]. У сфері управління 
кризами [28] пропонується модель покриття для мобільних медичних підрозділів з використанням прогноз-
ної аналітики для оптимізації розміщення центрів вакцинації чи тестування з обмеженнями на безпеку та 
доступність, що безпосередньо стосується наших заборонених зон. Аналогічно [29] оцінює надійність сен-
сорних мереж для моніторингу пожеж, фокусуючись на обмеженнях розміщення та факторах відмов, що 
наша модель покращує через гнучке оброблення форм та швидку оптимізацію. Безпека, спостереження та 
реагування на катастрофи також покладаються на максимізацію надмірності сенсорів у складних об’єктах 
з використанням стратегій орієнтованих на надійність [29, 30].

Інтеграція ройових і меметичних алгоритмів, сурогатних нейронних мереж (стилю Deep Sets з актив-
ним навчанням) та опціональних локальних згладжувачів (наприклад, BFGS) робить підхід незалежним від 
розв’язувача, розширюваним до перешкод, анізотропії та невизначеностей, стійким для чутливих до часу 
застосувань.

Метою статті є розробка та обґрунтування адаптивного методу на основі нейронних мереж для розв’я-
зання задачі розміщення з максимальним покриттям, що враховує заборонені зони для центрів об’єктів, 
з метою підвищення ефективності оптимізації в умовах складної геометрії та обмежених ресурсів.

Виклад основного матеріалу. Для розв’язання задачі MCLP з забороненими зонами ми розробили 
комплексну методологію, що поєднує нелінійну оптимізацію, ройові та меметичні алгоритми, а також 
сурогатне моделювання на основі нейронних мереж для максимізації покриття з дотриманням просторо-
вих обмежень. Метод пристосований до складних геометричних конфігурацій, як нерегулярні багатокутні 
території та об’єкти покриття довільних форм, що робить його придатним для реальних застосувань, як 
розміщення мобільних медичних підрозділів та моніторинг довкілля. Наша формулювання базується на 
попередніх роботах з безперервної оптимізації покриття [7–10], розширюючи їх адаптивними механізмами 
штрафів та ефективними оцінками. Параметри алгоритмів налаштовано на основі попередніх експеримен-
тів з подібними екземплярами MCLP для балансу покриття та обчислювальної ефективності.

Розглядаємо компактну область покриття �� 2 , зазвичай нерегулярний багатокутник, що покри-
вається n компактними об’єктами S i ni ( ,..., )=1  із заданою формою. Кожен об’єкт трансформується зсу-
вом до координат x x xi i i� �( , )1 2 2

  та поворотом на кут � �i �[ , )0 2 , утворюючи трансформований об’єкт
T S x R y x x y Si i i i i i i i( , , ) { ( )( ) | }� �� � � � , де R i( )θ  – матриця повороту. 

Потрібно максимізувати покриту площу області �� 2 , визначену як 

A z area T S xi i i i
i

n

( ) ( , , )� �
�

�
�

�

�
�

�

� �
1


,

де z x x x xn n n
n� � ��1

1
1
2

1
1 2 3, , ,..., , ,� �   узагальнює змінні розміщення об’єктів S i ni ( ,..., )=1 .

Ключове обмеження вимагає, щоб центр кожного об’єкта xᵢ уникав k заборонених зон F j kj � �2 1( ,..., ) ,  
тобто

x F j ki j
j

k

� �
�

( ,..., )1
1


.

Оптимізаційна задача, що поставлена, належить до класу умовних задач нелінійного програмування 
і є багатоекстремальною та високорозмірною через геометричні операції та обмеження, вимагаючи стійких 
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стратегій. Для перетворення умовної задачі оптимізації в безумовну ми застосовуємо метод штрафних 
функцій. 

Порушення для центру кожного об’єкта визначається як 

V x I x Fi i i j
j

k

( ) ( )� �
�
�

1

,

де I ( )⋅  – індикаторна функція, що дорівнює 1, якщо x Fi j∈ , і 0 – інакше.
Для гладкіших формулювань, ми використовуємо 

V x r dist x Fi i j i j
j

k

( ) max( , ( , ))� �
�
� 0 2

1

,

де rj  – характерний радіус зони.
Тоді загальний штраф буде визначатися як 

V z V xi i
i

n

( ) ( )�
�
�

1

.

Покладемо
P z V z( ) ( )� � ,

де � � 0  – штрафний коефіцієнт. 
Результуюча цільова функція стане f z A z V z( ) ( ) ( )� ��  і оптимізаційна задача матиме вигляд 

max ( )
z n

f z
∈3

.

За теорією зовнішніх штрафів штрафний коефіцієнт ρ  починається з 10 і динамічно зростає � �k kc� �1  
( )c =10 . 

Для уникнення ручного налаштування пропонується розглядаємо ρ  як додаткову змінну, визначаючи 
� �� � �( , )z n3 1 ,

та оптимізуючи
f A z V z( ) ( ) ( )� �� � .

Нейронна мережа апроксимує залежність від ρ , навчаючись на вибірках � �k kf, ( )� � , і прогнозує очі-
куване покращення 

EI f fbest( ) [max( , ( ))]� �� �
�

 0 ,

для керування ρ , збільшуючи його при V z( ) .> 0 01  або зменшуючи при застої оптимізації [16]. Цей 
самоадаптивний штраф мінімізує композитну втрату 

L MSE f f� � �( ) � �

2
,

підвищуючи стійкість.
Для подолання багатоекстремального ландшафту застосовуємо гібридну рамку оптимізації, що поєд-

нує ройовий інтелект та меметичні алгоритми, спираючись на їх ефективність у геометричних та високороз-
мірних задачах [11–15]. PSO, натхненний поведінкою зграй [11], оновлює кандидат-розв’язки (частинки) за 
допомогою швидкостей, керованих особистими та глобальними найкращими позиціями:

� ��k k best k best kc r p z c r g z� � � � � �1 1 1 2 2( ) ( ) ,
з подальшим перерахування

z zk k k� �� �1 1� ,
де ω  (інерція) зменшується від 0,9 до 0,4, а c c1 2 1 5= = . , r r1 2 0 1, [ , ]∈ .
Розмір рою ( N � �50 100 ) та ітерації (T � �500 1000 ) налаштовано для балансу дослідження та ефек-

тивності в межах 5–10 хвилин, з початковими швидкостями обмеженими 10% діапазону пошуку.
Зважаючи на обчислювальну інтенсивність геометричних операцій, як розрахунки площ об’єднань 

та перетинів, застосовуємо сурогатне моделювання на основі нейронних мереж для прискорення оцінок, 
техніку, що стає ключовою для оптимізаційних задач [16, 20, 22]. Нейронна мережа стилю Deep Sets, реа-
лізована в PyTorch (версія 1.12), забезпечує інваріантність до перестановок множин об’єктів, приймаючи 
нормалізовані як вхід і видаючи скалярну апроксимацію f

�

( )� .
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Архітектура включає вбудовування на об’єкт через 3 повнозв’язні шари (128–256 нейронів, активація 
ReLU), за яким слідує усереднення та конкатенація з кількістю заборонених зон, і вихідний шар. Навчання 
на 5000–10000 вибірках � �( ) ( ), ( )l lf� � , згенерованих через латинський гіперкубовий семплінг у 3 1n+ , з точ-
ним, обчисленим методами Монте-Карло чи Shapely [9, 10]. 

Мережа оптимізується Adam (швидкість навчання 0,001, decay 0,95) у Python 3.8, мінімізуючи 
MSE + L1 втрату за 1000 епох, з розміром батчу 64, dropout 0,2 та L2 регуляризацією (weight decay 0,001). 
Активне навчання оновлює набір даних кожні 50 ітерацій, обираючи 5–10 точок з високою невизначеністю 
чи очікуваним покращенням, зменшуючи MSE до ~0,005 та дозволяючи 80–90% оцінок використовувати 
швидкі сурогатні прогнози (інференс ~1 мс) [19].

Цільова функція f ( )ζ  складається з площі покриття A z( )  та штрафу V z( )  за порушення, оцінюваних 
гібридним підходом, що поєднує точні та апроксимативні методи. Бібліотека Shapely (версія 2.0) полег-
шує точні 2D геометричні операції, трансформуючи об’єкти через поворот та зсув, обчислюючи об’єднання 
з T T Tn1 2, ,..., , перетинаючи Ω  з A z( )  для отримання та перевіряючи порушення центрів з x Fi j∈ . Зазначимо, 
що Shapely ресурсомісткий для складних форм. Для подолання цього використовується апроксимація Мон-
те-Карло для ранніх ітерацій (помилка 1–5%) та для фінальної точності (<0,1%). Порушення обчислюються 
точно, а багатофідельна стратегія використовує Монте-Карло для дослідження та Shapely для топ-10% кан-
дидатів чи валідації, досягаючи прискорення у 10–50 разів. 

Для міри порушення � �( ) , що представляє непокриті площі, застосовуємо дискретизацію Монте-Карло 
з 2000–20000 точками (адаптивна сітка), тестуючи включення через ray-casting чи функції відстаней, або 
точні обчислення Shapely для високофідельної перевірки, забезпечуючи стійку оцінку на етапах оптимізації.

Гібридна архітектура оптимізації координує компоненти безшовно. Вона починається з жадібної ініці-
алізації для апроксимації покриття, за якою слідує глобальне дослідження за допомогою DE чи PSO з суро-
гатними оцінками. Періодичні точні перевірки уточнюють топ-кандидатів, які проходять локальну оптимі-
зацію CMA-ES, а сурогатна нейронна мережа оновлюється новими даними.

Висновки. Розроблений адаптивний метод на основі нейронних мереж ефективно розв’язує задачу 
MCLP з забороненими зонами, досягаючи високого рівня покриття в обмежених часових рамках. Меметич-
ний алгоритм перевершує PSO завдяки гібридному механізму глобально-локального пошуку, тоді як суро-
гатна нейронна мережа забезпечує значне прискорення обчислень, сприяючи практичному впровадженню. 
Адаптивний механізм штрафів гарантує відсутність порушень обмежень без ручного налаштування, під-
креслюючи стійкість самоадаптивної рамки.

Незважаючи на досягнутий рівень, результати вказують на внутрішні обмеження через геометричну 
складність: об’єкти не можуть ідеально заповнювати нерегулярний багатокутник, призводячи до прогалин 
чи перетинів, що обмежують покриття нижче теоретичного максимуму. Заборонені зони додатково стри-
мують розміщення, створюючи вузькі місця з мінімальними покращеннями. Ці висновки узгоджуються 
з NP-складністю геометричних задач покриття та свідчать, що рівні вище 85–90% вимагають більших 
ресурсів чи альтернативних форм об’єктів.
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