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МЕТОДИ АНАЛІЗУ ІНДИВІДУАЛЬНИХ ВИМІРЮВАНЬ АРТЕРІАЛЬНОГО ТИСКУ: 
ТРЕНДИ, СЕЗОННІСТЬ ТА ПРОГНОЗУВАННЯ

У роботі досліджено підхід до аналізу індивідуальних щоденних вимірювань артеріального тиску з метою вияв-
лення довгострокових тенденцій, періодичних коливань та прогнозування можливих змін у майбутньому. Розглянуто 
використання методів лінійної регресії, STL-декомпозиції, а також моделей ARIMA, SARIMA та Holt-Winters для ана-
лізу артеріального тиску на основі часових рядів. Їх використання дало змогу здійснити оцінку змін у фізіологічних 
показниках пацієнта та визначити закономірності динаміки артеріального тиску. Аналіз показників проведено на 
даних довготривалого домашнього моніторингу 67-річного пацієнта з атеросклерозом. Досліджено, що лінійна регре-
сія є ефективною у визначенні базових довгострокових трендів, що відображають поступові зміни середнього рівня 
артеріального тиску. Метод STL-декомпозиції дозволяє візуалізувати структуру часових рядів та виокремити ком-
поненти тренду, сезонності й залишкових коливань. Аналіз отриманих результатів показав, що модель Holt-Winters 
забезпечує найкращу точність прогнозування як для систолічного, так і для діастолічного тиску у випадках відсутно-
сті або слабкої вираженості сезонних коливань. Натомість модель SARIMA виявилася більш придатною для даних із 
наявними періодичними патернами, тоді як ARIMA доцільно застосовувати як базовий інструмент для оцінки загаль-
них тенденцій без акценту на сезонність. Для кількісного оцінювання точності моделей використано стандартні 
метрики – середню абсолютну похибку (MAE) та корінь середньоквадратичної помилки (RMSE). Зроблено висновок про 
доцільність застосування методів аналізу часових рядів у персоналізованій медичній аналітиці. Визначено, що якість 
і тривалість збору даних, а також розширення спектру вимірюваних параметрів є ключовими чинниками для ство-
рення точних індивідуальних профілів ризику, що відображають реальну динаміку фізіологічного стану пацієнта.

Ключові слова: артеріальний тиск, часові ряди, лінійна регресія, сезонна декомпозиція, ARIMA, SARIMA, Holt-
Winters, персоналізоване прогнозування.

Nadryhailo T. Zh., Peremitko M. V. Methods for analyzing individual blood pressure measurements: trends, seasonality, 
and forecasting

The article investigates an approach to analyzing individual daily blood pressure measurements with the aim of identifying 
long-term trends, periodic fluctuations, and forecasting possible future changes. The study explores the use of linear regression, 
STL decomposition, and the ARIMA, SARIMA, and Holt-Winters models for analyzing blood pressure as a time series. The appli-
cation of these methods made it possible to assess changes in a patient’s physiological parameters and to determine regularities 
in the dynamics of blood pressure. The analysis was conducted on data obtained from long-term home monitoring of a 67-year-
old patient diagnosed with atherosclerosis. Linear regression was found to be effective in identifying baseline long-term trends 
that reflect gradual changes in the average blood pressure level. The STL decomposition method allows for the visualization of 
the time series structure and the separation of trend, seasonal, and residual components, providing a clearer understanding of 
the underlying patterns. The results of the study showed that the Holt-Winters model provides the highest forecasting accuracy 
for both systolic and diastolic blood pressure in cases where seasonal fluctuations are absent or weakly expressed. Conversely, 
the SARIMA model demonstrated better performance when the data contained pronounced periodic patterns, while ARIMA was 
found to be most appropriate as a baseline approach for assessing general trends without emphasizing seasonal influences. To 
quantitatively evaluate the accuracy of the models, standard statistical metrics – Mean Absolute Error (MAE) and Root Mean 
Square Error (RMSE) – were employed. The comparative analysis of these metrics confirmed the importance of accounting for 
seasonality when building predictive models of physiological processes. The study highlights the potential of time series analysis 
methods for use in personalized medical analytics. It demonstrates that these methods can effectively reveal the dynamics and 
variability of an individual’s cardiovascular parameters, enabling a more nuanced understanding of personal health trajecto-
ries. However, the research also indicates that the reliability and accuracy of such models significantly depend on the quantity 
and duration of collected data. For reliable short-term forecasting, a dataset containing at least one hundred observations is 
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recommended, while more extensive time series are required for identifying stable long-term trends and seasonal cycles. Fur-
thermore, integrating additional physiological and environmental parameters – such as heart rate variability, physical activity, 
stress levels, and ambient temperature – into forecasting models could significantly enhance their precision and adaptability. 
These factors may influence blood pressure fluctuations and thus should be incorporated into future predictive frameworks. The 
study concludes that comprehensive, long-term monitoring combined with advanced time series modeling can serve as a foun-
dation for developing precise individualized risk profiles that reflect the true dynamics of a patient’s physiological condition and 
support data-driven medical decision-making.

Key words: blood pressure, time series, linear regression, seasonal decomposition, ARIMA, SARIMA, Holt-Winters, per-
sonalized forecasting.

Постановка проблеми. Своєчасне виявлення змін у стані серцево-судинної системи є однією з голов-
них задач сучасної медицини. Хоча технології домашнього моніторингу артеріального тиску активно розви-
ваються, сучасні методи аналізу часто обмежуються лише розглядом окремих показників або середніх зна-
чень за певні періоди. Такий підхід не завжди дозволяє виявити приховані тренди чи закономірні коливання, 
які можуть бути ранніми ознаками розвитку серцево-судинних захворювань.

Крім того, щоденні вимірювання артеріального тиску формують часові ряди з високою варіабельністю, 
які можуть містити сезонні компоненти. Ці особливості часто залишаються поза увагою при традиційній 
обробці даних, що ускладнює оцінку довгострокових змін і потенційних ризиків для здоров’я. Наприклад, 
тривале підвищення середніх значень артеріального тиску може сигналізувати про поступове погіршення 
стану серцево-судинної системи, а сезонні коливання можуть вказувати на адаптаційні реакції організму до 
змін навколишнього середовища або ритму життя. Отже, постає задача розробити більш глибокий підхід 
до аналізу таких індивідуальних часових рядів, щоб не лише виявляти тренди та сезонні компоненти, але 
й забезпечувати можливість персоналізованого прогнозування ризиків для здоров’я.

Аналіз останніх досліджень і публікацій. Методи статистичного аналізу, такі як лінійна регресія 
та сезонна декомпозиція, вже давно використовуються для вивчення довгострокових трендів у медичних 
часових рядах. Наприклад, поєднання методів STL (Seasonal and Trend decomposition using Loess) та лінійної 
регресії дозволяє виявляти приховані довгострокові тенденції в часових рядах [1]. Водночас, застосування 
моделей ARIMA та SARIMA є ефективним підходом для короткострокового прогнозування часових рядів 
[2]. Ці моделі вимагають ретельного налаштування параметрів і достатньо довгих історичних рядів даних. 
Тому треба враховувати, що результати прогнозування залежать від кількості вхідних даних і зовнішніх 
факторів, а також від дослідника і умов експерименту [3].

Однак, попри успіхи у використанні статистичних методів для аналізу великих вибірок, їхнє застосу-
вання до щоденних домашніх вимірювань артеріального тиску досі залишається обмеженим. Це пов’язано 
з відсутністю довготривалих, структурованих і високоякісних даних, необхідних для побудови стабільних 
прогнозних моделей. Саме тому актуальним залишається питання розробки методів аналізу, які могли б 
адаптуватися до індивідуальних характеристик пацієнтів і враховувати сезонні коливання. Наприклад, інди-
відуальні підходи до прогнозування артеріального тиску можуть значно підвищити точність оцінки ризиків, 
що підтверджує доцільність проведення подібних досліджень.

Таким чином, дане дослідження, яке використовує комбінацію методів лінійної регресії, сезонної 
декомпозиції та моделей прогнозування, спрямоване на подолання цих обмежень. Воно має на меті розши-
рити можливості індивідуалізованого аналізу артеріального тиску, що є важливим кроком до покращення 
точності діагностики та моніторингу стану пацієнтів у реальних умовах.

Метою даного дослідження є розробка та апробація підходу до аналізу індивідуальних щоденних 
вимірювань артеріального тиску для виявлення довгострокових трендів, сезонних коливань та прогнозу-
вання майбутніх змін. Такий підхід дозволить не лише покращити розуміння динаміки артеріального тиску 
в реальних умовах, але й створити передумови для персоналізованого моніторингу та раннього виявлення 
ризиків серцево-судинних захворювань.

Опис набору даних. Для проведення цього дослідження було використано набір даних "Home Blood 
Pressure Monitoring for Trend and Seasonality Detection" з платформи Mendeley Data. Дані зібрано в рамках 
тривалого домашнього моніторингу артеріального тиску у 67-річного чоловіка з діагностованим атероскле-
розом. Моніторинг проводився у стандартних умовах: правильне положення пацієнта, манжета на оголеній 
руці, після гігієнічних процедур. Кожне вимірювання включало три послідовні спроби з інтервалом близько 
однієї хвилини, після чого обчислювалося середнє значення [4].

Загальна тривалість спостережень склала понад рік, з двома днями перерви між послідовними вимі-
рюваннями. Це дало змогу отримати 128 вимірювань для кожного показника: систолічного артеріального 
тиску (САТ), діастолічного артеріального тиску (ДАТ) та частоти серцевих скорочень (ЧСС).

Викладення основного матеріалу дослідження. Лінійна регресія є одним із базових статистичних 
методів аналізу часових рядів і широко застосовується у медичних дослідженнях для вивчення довгостроко-
вих змін фізіологічних показників. Цей підхід дозволяє змоделювати тренд, що описує загальну тенденцію 
зміни досліджуваної змінної в часі. Модель простої лінійної регресії описується рівнянням:
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y ax bi i i� � � �                                                                          (1)
де yi – значення залежної змінної (наприклад, артеріального тиску) для i-го спостереження, xi – зна-

чення незалежної змінної (наприклад, часу), a  – коефіцієнт нахилу, що відображає середній темп зміни 
показника, b  – вільний член (зміщення регресійної прямої відносно осі ординат), а εi  – залишкова похибка, 
яка моделює випадкові відхилення. Оцінка параметрів a та b виконується методом найменших квадратів за 
формулами:
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де x  і y  – середні значення незалежної та залежної змінних відповідно [5].
Побудова такої моделі дозволяє виділити детермінований компонент у структурі часового ряду – тренд, 

який відображає загальний напрямок динаміки досліджуваного процесу, наприклад, поступове підвищення 
або зниження артеріального тиску з часом.

Лінійна регресія була застосована до індивідуальних рядів систолічного (САТ) і діастолічного (ДАТ) 
артеріального тиску для визначення загальних тенденцій зміни цих показників у часі. Для цього використо-
вувався числовий індекс часу – проста послідовність чисел, що відповідає кожному вимірюванню з інтер-
валом у два дні. Такий підхід дозволяє відобразити довгострокові зміни в артеріальному тиску, виявити 
загальні тренди та порівняти їх із фактичними значеннями на графіку. Це дозволяє оцінити, чи спостері-
гається поступове підвищення або зниження тиску та чи виходять ці коливання за межі рекомендованих 
значень (120/80 мм рт. ст.).

Результати аналізу показали (рис. 1), що систолічний тиск мав чітко виражений позитивний тренд із 
поступовим зростанням упродовж спостережуваного періоду. Діастолічний тиск також продемонстрував 
зростаючу динаміку, хоча з менш вираженим нахилом. Така картина свідчить про можливе хронічне підви-
щення артеріального тиску, що може потребувати медичного втручання або корекції лікування для пацієнта.

 
Рис. 1. Побудова тренду вимірів артеріального тиску за допомогою лінійної регресії

Попри свою простоту, метод лінійної регресії має низку важливих переваг у медичних застосуваннях. 
Зокрема, він дозволяє швидко оцінити загальний напрямок змін без попередніх припущень про сезонність 
чи автокореляцію даних. Однак цей метод має і певні обмеження, адже не враховує періодичні коливання чи 
структурні зміни, які можуть впливати на фізіологічні показники. Тому лінійна регресія часто використову-
ється як базовий інструмент для первинного аналізу.

Одним із головних недоліків лінійної регресії є її неспроможність враховувати сезонні компоненти, 
які мають циклічний характер. У випадку фізіологічних даних, таких як артеріальний тиск, такі коливання 
можуть бути спричинені сезонними змінами в навколишньому середовищі, рівнем фізичної активності 
або навіть стресовими ситуаціями. Для подолання цього обмеження використовуються методи сезонної 
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декомпозиції, які дозволяють розділити часовий ряд на три основні складові: трендову, сезонну та випад-
кову компоненти. Одним із найбільш ефективних сучасних методів для цього є метод STL (Seasonal-Trend 
decomposition based on Loess.

STL є одним із найгнучкіших методів декомпозиції часових рядів і широко використовується для вияв-
лення та окремого аналізу трендової, сезонної та залишкової складових. Метод дозволяє адаптивно моде-
лювати як тренд, так і сезонність завдяки застосуванню локального регресійного згладжування (LOESS), 
що робить його особливо корисним для аналізу медичних даних, де спостерігаються нерегулярні зміни [6]. 
Декомпозиція адитивної форми записується як:

y T S R t nt t t t� � � � �, , , ,1 2                                                               (4)
де yt – значення часового ряду в момент часу t , Tt  – трендова компонента, яка визначається як 

згладжена оцінка довгострокової зміни рівня ряду за допомогою локальної регресії LOESS, St  – сезонна 
компонента, що відображає періодичні коливання з фіксованим періодом P , і обчислюється як усереднення 
відхилень для кожної фази циклу, а Rt  – залишкова компонента, що дорівнює:

R y T St t t t� � �                                                                           (5)
Процедура декомпозиції виконується ітеративно. На кожному кроці для заданого вікна часу w  трен-

дова компонента Tt  обчислюється за формулою локального згладжування LOESS:
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де wi  – вагові коефіцієнти, визначені функцією локального згладжування (наприклад, трикутна або 
гаусова вага), симетрично навколо точки  t . Сезонна компонента визначається шляхом усереднення залиш-
ків по кожній сезонній позиції:
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                                                                     (7)

У цьому дослідженні STL-декомпозиція була виконана окремо для систолічного та діастолічного арте-
ріального тиску з періодом 15, що відповідає місячному циклу (30 днів із кроком вимірювання у два дні). 

На (рис. 2) наведено результати STL-декомпозиції для систолічного артеріального тиску (САТ). 
Верхній підграфік («Observed») представляє початковий часовий ряд, який характеризується значною 
варіабельністю і виразними хвилеподібними коливаннями. Такі коливання можуть відображати щоденні 
коливання артеріального тиску, пов’язані з фізичним навантаженням, стресом або іншими зовнішніми 
факторами.

 
Рис. 2. STL-декомпозиція САТ
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Середній підграфік («Trend») демонструє трендову компоненту, згладжену за допомогою локально-ви-
важених регресій (LOESS). Ця лінія відображає загальний напрямок змін тиску протягом спостережува-
ного періоду. Зокрема, можна побачити поступове підвищення значень САТ з березня до червня, невелике 
зниження в серпні і нове зростання на початку вересня. Така динаміка свідчить про наявність нелінійного 
тренду, який неможливо коректно відобразити за допомогою простої лінійної регресії, що підкреслює пере-
ваги STL-декомпозиції для аналізу таких даних.

Нижній підграфік («Seasonal») відображає сезонну компоненту, що складається з коливань ампліту-
дою близько ±5–10 мм рт. ст. Ці коливання можуть бути зумовлені фізіологічними ритмами або зовнішніми 
факторами, такими як зміни температури, рівня активності або стресу.

Аналогічні результати спостерігаються для діастолічного тиску (ДАТ), що зображено на (рис. 3). Трен-
дова компонента для ДАТ також демонструє поступове зростання протягом першої половини року з незнач-
ним зниженням у середині літа, що відповідає типовій сезонній динаміці. Однак амплітуда коливань для 
діастолічного тиску є дещо меншою порівняно з САТ. 

 
Рис. 3. STL-декомпозиція ДАТ

Загалом, метод STL виявився значно ефективнішим порівняно з простою лінійною регресією для ана-
лізу динаміки артеріального тиску. Завдяки можливості виділяти як трендову, так і сезонну компоненти, 
цей метод забезпечує більш детальне уявлення про структуру часового ряду, що є особливо важливим для 
персоналізованого моніторингу стану здоров’я. 

Після ідентифікації трендової та сезонної компоненти часового ряду наступним кроком є побудова 
моделей прогнозування. У дослідженнях динаміки фізіологічних показників, зокрема артеріального тиску, 
ефективними є такі підходи до аналізу часових рядів: ARIMA, SARIMA та Holt-Winters. Кожен із цих мето-
дів дозволяє по-різному моделювати як трендову, так і сезонну структуру, забезпечуючи точне короткостро-
кове прогнозування.

Модель ARIMA (AutoRegressive Integrated Moving Average) поєднує авторегресивну частину, диферен-
ціювання та ковзне середнє. Структура моделі ARIMA(p, d, q) задається рівнянням :

� �B B y B
d

t t� � �� � � � �1 µ                                                                   (8)

де B  – оператор зсуву назад: By yt t� �1 ​; d  – порядок диференціювання для досягнення стаціонар-
ності ряду; � � �B B Bp

p� � � � � �1 1   – поліном авторегресії порядку p ; ¸ ¸ ¸B B Bq
q� � � � � �1 1   – полі-

ном ковзного середнього порядку q ; µt  – випадкова похибка. У розгорнутому вигляді ця модель набуває 
вигляду [7]:
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Для часових рядів із вираженою сезонністю застосовується модель SARIMA (Seasonal ARIMA), яка 
доповнює стандартну ARIMA сезонними лагами. Повна форма моделі SARIMA(p, d, q)(P, D, Q)s запису-
ється як:

� �B B B B y B Bs d s D

t
s

t� � � � �� � �� � � � � � �� � �1 1                                               (10)

де s  – довжина сезонного циклу, � �Bs Bs� � � �  – сезонні поліноми авторегресії та ковзного серед-
нього відповідно, D  – порядок сезонного диференціювання. Така модель дозволяє одночасно враховувати 
як короткострокові, так і сезонні залежності у даних [8].

Модель експоненційного згладжування Holt-Winters, на відміну від ARIMA, не вимагає стаціонарності 
ряду і будується за принципом оновлення оцінок тренду та сезонності в режимі реального часу. Адитивна 
форма моделі визначається як:

y hb st h t t t t h m k� � � �� �� � �| l 1                                                                 (11)

l lt t t m t ty s b� �� � � �� � �� �� � �� �1 1 1                                                        (12)

b bt t t t� �� � � �� �� �� �l l 1 11                                                              (13)

s y b st t t t t m� � �� � � �� �� � �� �l 1 1 1                                                           (14)

де lt  – рівень ряду, – трендова компонента, st  – сезонна компонента з періодом m , α , β , γ  ∈  [0,1] – 
параметри згладжування, а h  – горизонт прогнозу. Завдяки оновленню компонент на кожному кроці модель 
Holt-Winters є особливо корисною для адаптивного прогнозування з урахуванням змінної сезонної пове-
дінки [9].

Для навчання кожної моделі було використано перші 113 спостережень, що охоплюють приблизно 
354 дні вимірювань. Прогноз будувався на основі останніх 15 точок. Результати прогнозування для систо-
лічного (САТ) та діастолічного (ДАТ) артеріального тиску зображено на рисунках 4–6 для моделей ARIMA, 
SARIMA та Holt-Winters відповідно. Загалом, всі три моделі змогли відобразити загальну динаміку змін 
тиску в короткостроковій перспективі, але точність їхніх прогнозів відрізнялася.

 
Рис. 4. Прогноз САТ і ДАТ за допомогою моделі ARIMA

 
Рис. 5. Прогноз САТ і ДАТ за допомогою моделі SARIMA
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Рис. 6. Прогноз САТ і ДАТ за допомогою моделі Holt-Winters

Для кількісного порівняння використовувалися дві метрики: середнє абсолютне відхилення (MAE) та 
корінь середньоквадратичної помилки (RMSE), які визначаються наступними формулами:
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де yi  – фактичні значення, а yi  – прогнозовані [5]. 
Аналіз помилок прогнозування, представлених у таблиці 1, показав, що найменші значення помилок 

для САТ отримано за моделлю Holt-Winters (RMSE = 7.04, MAE = 4.55), що свідчить про її найкращу точ-
ність серед протестованих методів для цього показника. Для ДАТ найнижчі значення помилок також проде-
монструвала модель Holt-Winters (RMSE = 6.32, MAE = 4.86), що підтверджує її стабільність і ефективність 
при прогнозуванні діастолічного тиску.

Натомість моделі ARIMA та SARIMA мали вищі значення RMSE та MAE для обох типів тиску, при-
чому SARIMA показала найбільші похибки (CAT RMSE = 9.60, MAE = 7.50). Це може свідчити про те, 
що для аналізованих часових рядів сезонна компонента або відсутня, або слабко виражена, а тому сезонні 
моделі не дають переваги.

Таблиця 1
Model САТ RMSE САТ MAE ДАТ RMSE ДАТ MAE

ARIMA 8.100088 5.902779 5.953944 5.037023
SARIMA 9.604434 7.499918 6.028094 5.144817

Holt-Winters 7.042911 4.553356 6.323395 4.862390

Висновки. Загалом, результати цього дослідження підтверджують, що Holt-Winters є найбільш гнуч-
кою і точною моделлю для короткострокового прогнозування артеріального тиску за відсутності система-
тичних сезонних коливань. Водночас, модель SARIMA може бути корисною в ситуаціях, коли сезонність 
є більш вираженою. Модель ARIMA варто розглядати переважно як базовий підхід для оцінки загальних 
тенденцій без акценту на сезонні впливи.

Отримані результати підкреслюють важливість використання методів аналізу часових рядів для глиб-
шого розуміння індивідуальних змін артеріального тиску. Лінійна регресія дозволила виділити основні дов-
гострокові тренди, тоді як STL-декомпозиція допомогла розглянути сезонні патерни та нелінійні тренди, 
пов’язані з фізіологічними або зовнішніми чинниками. 

Прогнозування було зосереджене на короткостроковому горизонті (лише 15 останніх точок), резуль-
тати свідчать, що для побудови точніших і надійніших довгострокових прогнозів необхідно використовувати 
значно більші обсяги історичних даних. Понад 100 спостережень – це мінімальний обсяг для досягнення 
прийнятної точності, але для виявлення довгострокових трендів та стабільних сезонних патернів може зна-
добитися ще більше вимірювань.

Крім того, для покращення точності таких моделей доцільно використовувати додаткові метрики, які 
можуть враховувати ширший спектр фізіологічних та зовнішніх факторів. Це можуть бути показники сер-
цевого ритму, варіабельність пульсу, рівень фізичної активності, стресові фактори або навіть зміни темпера-
тури навколишнього середовища. Інтеграція таких параметрів у прогнозні моделі може суттєво підвищити 
їхню точність та адаптивність, особливо для довгострокових оцінок.



54 ISSN 2521-6643                              Системи та технології, № 2 (70), 2025

Таким чином, перспективи персоналізованого прогнозування артеріального тиску значною мірою 
залежать від якості та тривалості збору даних. Розширення спектру вимірюваних параметрів та збільшення 
обсягів історичних спостережень може сприяти створенню більш точних індивідуальних профілів ризику, 
що враховують реальну динаміку стану пацієнта.
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