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АНАЛІТИЧНІ МЕЖІ ТОПОЛОГІЧНОЇ СТІЙКОСТІ ДИНАМІЧНИХ СИСТЕМ  
ЗА УМОВ ШУМУ ТА СТРУКТУРНИХ АНОМАЛІЙ

У статті розроблено узагальнену аналітичну модель визначення меж топологічної стійкості динамічних сис-
тем за умов шуму та структурних аномалій. Топологічна стійкість розглядається як інваріантність якісного типу 
динаміки – збереження індексу Конлі, морсівської декомпозиції та гомологічного класу атрактора – при стохастич-
них і дискретних структурних збуреннях, що змінюють геометрію та зв’язність компонентів системи. На відміну 
від класичних підходів, що базуються на локальній метричній стабільності, запропоновано методологію, яка поєднує 
операторний формалізм еволюційних потоків, спектральний аналіз генератора напівгрупи та топологічно-статис-
тичні інваріанти. Основою методу є трактування шумових і структурних впливів як параметричних збурень системи, 
що дозволяє простежити неперервність спектра та визначити умови збереження топологічних інваріантів. Введено 
інтегральний функціонал топологічної жорсткості як кількісну міру середньої зміни структури атрактора; показано, 
що його поведінка задає порогові умови втрати стійкості та визначає межі інваріантності системи. Аналітично 
виведено граничні співвідношення, які описують область аналітичної стійкості – множину параметрів шуму, коре-
ляційного часу, глибини й рангу структурних дефектів, у межах якої ймовірність зміни топологічного інваріанта не 
перевищує заданого рівня. Проведене комп’ютерне тестування підтвердило адекватність моделі: аналітичні межі 
збігаються з емпіричними результатами, отриманими методом топологічного аналізу даних із використанням діа-
грам персистентності. Виявлено, що у діапазоні малих збурень форма емпіричної межі практично тотожна ана-
літичній, а відхилення у перехідній зоні не перевищують очікуваної стохастичної похибки. Результати дослідження 
підтверджують ефективність запропонованого підходу для кількісного прогнозування моментів втрати топологічної 
інваріантності та оцінювання запасу стійкості в реакційно-дифузійних, мережевих, нейродинамічних і керованих тех-
нічних системах. Методика є універсальною, відтворюваною й може бути інтегрована у модулі адаптивного керування 
складними об’єктами, що працюють в умовах невизначеності та шумових впливів.

Ключові слова: топологічна стійкість, структурні аномалії, оператор Купмана, оператор Перрона–Фробеніуса, 
топологічний аналіз даних.

Yershov S. V., Symonov Ye. D. Analytical Bounds on the Topological Stability of Dynamical Systems under Noise and 
Structural Anomalies

The paper develops a generalized analytical model for determining the bounds of topological stability of dynamical systems 
under noise and structural anomalies. Topological stability is interpreted as the invariance of the qualitative type of dynamics–
preservation of the Conley index, Morse decomposition, and the homological class of the attractor–under stochastic and discrete 
structural perturbations that modify the geometry and connectivity of system components. Unlike classical approaches based on 
local metric stability, the proposed methodology integrates the operator formalism of evolutionary flows, the spectral analysis 
of the semigroup generator, and topological–statistical invariants. The core of the method is the representation of stochastic and 
structural effects as parametric perturbations of the system, which enables tracing the continuity of the generator spectrum and 
deriving the analytical conditions for the preservation of topological invariants. An integral functional of topological stiffness is 
introduced as a quantitative measure of the mean structural change of the attractor; its behavior determines the threshold condi-
tions for the loss of stability and delineates the invariance domain of the system. Analytical relations are derived that define the 
region of analytical stability–the set of noise intensities, correlation times, and depths and ranks of structural defects–within which 
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the probability of changing the topological invariant does not exceed a prescribed level. Numerical testing confirms the adequacy 
of the model: analytical bounds are consistent with empirical results obtained through topological data analysis using persistence 
diagrams. It is shown that in the low-perturbation regime the empirical boundary is nearly identical to the analytical one, while 
deviations in the transition zone remain within the expected stochastic uncertainty. The results demonstrate the effectiveness of 
the proposed approach for quantitative prediction of the onset of topological instability and for assessing the stability margin in 
reaction–diffusion, networked, neurodynamic, and controlled technical systems. The methodology is universal, reproducible, and 
can be integrated into adaptive control modules of complex systems operating under uncertainty and noisy environments.

Key words: topological stability, structural anomalies, Koopman operator, Perron–Frobenius operator, topological data 
analysis.

Постановка проблеми. У дослідженні складних динамічних систем, що функціонують в умовах наяв-
ності стохастичних збурень і структурної невизначеності, особливої актуальності набуває задача визначення 
аналітичних меж топологічної стійкості. Топологічна стійкість у формулюванні Андронова–Понтрягіна 
трактується як інваріантність якісної структури фазового портрета динамічної системи за малих збурень її 
векторного поля. Інакше кажучи, система зберігає топологічний тип атракторів, множин стійкості та роз-
шарувань фазового простору, якщо існує гомеоморфізм, що переводить фазові траєкторії збуреної системи 
у траєкторії незбуреної [1]. Класична теорія передбачає диференційовність відображень і неперервно-малий 
характер параметричних варіацій, що забезпечує коректність локального аналізу у сенсі метричної близь-
кості. Однак у реальних динамічних системах – фізичних, біологічних, технічних і соціотехнічних – ці пере-
думови часто порушуються: стохастичні збурення, дискретні структурні аномалії та топологічні дефекти 
зв’язності призводять до розривів у фазових відображеннях, зміни числа інваріантних множин і потенційної 
втрати гомеоморфізму між вихідним і збуреним потоками.

Під структурною аномалією розуміють локальну або глобальну зміну топологічної структури дина-
мічної системи, що проявляється у видаленні або появі вузлів, розриві зв’язків, зміні метричних характерис-
тик простору станів чи рангу операторів взаємодії. Такі модифікації порушують безперервність фазового 
потоку, спричинюючи перетин роздільних многовидів і формування нових класів атракторів, не гомеоморф-
них вихідним. За наявності стохастичних збурень ці процеси набувають нелінійно-резонансного характеру: 
навіть малі шумові флуктуації можуть ініціювати переходи між топологічними типами динаміки, змінюючи 
кількість або морсівський індекс інваріантних множин. Унаслідок цього класичні критерії стабільності – 
зокрема Ляпунова чи Перрона – виявляються непридатними для опису таких режимів, оскільки вони харак-
теризують метричну, але не топологічну стійкість системи [2].

Визначення аналітичних меж топологічної стійкості потребує побудови формалізованих моделей, які 
інтегрують локальну метричну поведінку системи – її градієнтну або енергетичну структуру – з глобаль-
ними топологічними інваріантами, такими як індекс Пуанкаре, числа Бетті, показники зв’язності та ентро-
пійні міри структурної складності. У стохастичному середовищі ці інваріанти набувають ймовірнісного 
характеру, що зумовлює необхідність введення топологічно-статистичних функціоналів і визначення опера-
ційних аналогів понять середньої топологічної сталості та границі деградації інваріанта.

Таким чином, необхідна узгоджена аналітична теорія, яка б забезпечувала кількісне визначення області 
збереження топологічної структури динамічної системи за умов наявності шуму та структурних аномалій. 
Її побудова становить фундаментальну наукову проблему, розв’язання якої є необхідною передумовою для 
синтезу енерго- та топологічно-стійких механізмів керування, прогнозування критичних біфуркацій і вери-
фікації моделей складних систем у реальному стохастично-структурному середовищі.

Аналіз останніх досліджень і публікацій. Класична теорія структурної та топологічної стійкості фор-
мулює умови інваріантності якісного типу динаміки для гладких малих детермінованих збурень. Централь-
ними є умови структурної регулярності фазового потоку, що гарантують збереження топологічного класу 
динамічної системи при неперервних деформаціях її векторного поля. Однак ці умови не охоплюють сто-
хастичні збурення та дискретні структурні порушення [3]. Стохастична динаміка систем формалізується як:

x f x t G x t t� � �� � � � �� � � �, ,� �                                                                (1)

де x t n� ��  – вектор стану системи (узагальнена функція стану, що описує розподіл або конфігурацію 
системи у часі); �� �� 

p  – вектор детермінованих параметрів (у т.ч. структурних: коефіцієнти взаємодії, 
топологічні інваріанти/графові характеристики, фізичні константи); f n n�� � � �: � – гладке поле правих 
частин (за Ліпшицем) із лінійним зростанням, що гарантує існування слабкого розв’язку; G �� �  – дифузійний 
тензор, який визначає мультиплікативну дію стохастики на координати стану; � t� �  – шум із інтенсивністю σ .

У сучасній теорії динамічних систем сформульовано поняття випадкового атрактора як інваріантної вимір-
ної множини, що узагальнює детерміноване уявлення про притягувальні структури для систем із шумовими 
збуреннями. Для таких множин побудовано інваріантні та напівінваріантні міри, а також розроблено апарат 
випадкових спектрів Ляпунова, які відображають середні експоненційні темпи розходження траєкторій у стохас-
тичному середовищі. Показано, що за малих інтенсивностей шуму ці спектральні характеристики змінюються 
безперервно або напівбезперервно, що гарантує метричну, але не топологічну стабільність системи [4].
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Разом із тим, відомі результати мають переважно ергометричний характер: вони забезпечують збіж-
ність розподілів, існування стаціонарних мір і середню стабільність траєкторій, проте не дозволяють аналі-
тично визначити область параметрів шуму, у межах якої топологічні інваріанти системи – зокрема, кількість 
критичних компонент, індекс Конлі чи гомологічний клас атрактора – залишаються незмінними [5]. Інакше 
кажучи, стохастичні підходи адекватно описують енергетичну та метричну сталість динаміки, але не нада-
ють кількісного критерію її топологічної інваріантності.

На противагу цьому, структурні аномалії описують уже не стохастичні, а дискретно-детерміновані 
зміни у топології системи – перерозподіл зв’язків, втрату вузлів, зміну рангу операторів взаємодії чи 
топології фазового многовиду. Їх моделюють як варіації операторної або графової структури, які порушу-
ють безперервність відображення фазового потоку й призводять до потенційної зміни топологічного типу 
атрактора.

У сучасних моделях складних систем структурні аномалії розглядають як зміни операторної або гра-
фової структури динаміки, що порушують гладкість відображення у просторі станів. Формально це можна 
подати у вигляді:

x f x t� � �� � �� � ��, , ,G G G \ E V                                                            (2)
де   – топологія зв’язків системи; ∆ ,∆  – описують вилучення або додавання ребер і вузлів від-

повідно.
У лінійно-операторній формі аналогічна трансформація записується як:

A A A A r A k � � �� � � � �, , ,rank                                                        (3)
де r , κ  – характеризують глибину та енергію структурного збурення.
Такі дефекти змінюють топологію фазового многовиду, порушуючи нормальну гіперболічність інварі-

антних множин і викликаючи появу нових класів атракторів.
У мережевих та реакційно-дифузійних системах встановлено наявність критичних порогів зв’язності 

та перколяційних фазових переходів, при яких втрачається топологічна цілісність системи. Проте ці пороги 
мають переважно комбінаторний характер і не задають явних аналітичних меж між збереженням і втратою 
топологічної стійкості. Формалізація залежності r k,� �  від топологічного типу атрактора в сенсі Конлі або 
Морса досі обмежується якісними оцінками [6].

Паралельно розвинуто спектральні підходи – аналіз операторів переносу (Перрон–Фробеніус, Куп-
ман), які дозволяють оцінювати стійкість метастабільних множин через зміни спектральної щілини. Нерів-
ності типу Ласоти–Йорка забезпечують контроль інваріантних мір, але зв’язок між спектральною стабіль-
ністю та інваріантністю гомологічної структури атрактора у термінах норм збурень �,k� �  залишається не 
встановленим.

Значну увагу привертають методи топологічного аналізу даних (TDA), що забезпечують обчислювані 
топологічні інваріанти у вигляді діаграм персистентності D X� � . Їхня стабільність описується нерівністю:

d D X D Y C u uB X Y� � � �� � � �
�

, ,                                                         (4)

яка гарантує сталість топологічних характеристик за малих відхилень у фільтраційній функції u x� � .  
Проте застосування цього результату до динамічних систем вимагає встановлення аналітичного зв’язку між 
u uX Y�

�
, та параметрами шуму σ  і структурної деформації k . Наявні підходи описують переважно ста-

тичні або дискретні конфігурації, не визначаючи критичних меж, за яких імовірність збереження топологіч-
ного інваріанта перевищує 1� �  [7].

Додаткові концепції – теорія стохастичних біфуркацій (типи P і D), диференціальні включення та мно-
жини життєздатності – надають локальні умови втрати стабільності, але не інтегруються у глобальну топо-
логічну картину. Навіть результати щодо нормальної гіперболічності під стохастичним впливом гарантують 
лише існування продовжених многовидів, не встановлюючи порогових значень �,k� � , при яких змінюється 
індекс Конлі ( h NInv ,�� �� � ) або морсівський тип.

Отже, наявні дослідження охоплюють окремі аспекти – метричний, спектральний, комбінаторний 
і топологічно-обчислювальний, – проте відсутня єдина аналітична рамка, яка б об’єднала ці підходи у вигляді 
системи граничних співвідношень [8]:

� �� � � � �� � � � �� � � � �� � � ��
��

�
��� � � �, , , : , ,, ,c kk r h N h N Inv Inv 0 0 1�� �.                             (5)

Побудова таких співвідношень із явними залежностями від інтенсивності шуму � �, c� �  і глибини 
структурної деградації k r,� �  визначає відкриту задачу, без розв’язання якої неможливо сформулювати пов-
ноцінні аналітичні межі топологічної стійкості динамічних систем.

Метою цієї статті є побудова аналітичного підходу до визначення меж топологічної стійкості динаміч-
них систем за умов стохастичних збурень і структурних аномалій. Передбачається формалізація залежності 
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топологічних інваріантів – індексу Конлі, морсівського типу та гомологічного класу атрактора – від пара-
метрів шуму � �, c� �  і структурних змін k r,� � . Запропоновано сформулювати критерії інваріантності топо-
логічної структури через метричні та спектральні характеристики операторів динаміки, а також вивести 
граничні співвідношення, що окреслюють область ε  збереження топологічного типу системи з довірчою 
імовірністю не менше 1� � .

Виклад основного матеріалу. Перехід до аналітичного опису вимагає формального визначення дина-
мічної системи, для якої топологічна стійкість оцінюється не якісно, а через параметризовані функціонали, 
що відображають вплив шуму та структурних аномалій на інваріанти фазового потоку. Основна ідея полягає 
у побудові операторної моделі еволюції, де випадкові та дискретні збурення вводяться як збурення генера-
тора напівгрупи  � �, ,k k� � � �� � �0 . Таке подання дає змогу дослідити зміну спектральних властивостей і, 
відповідно, структури інваріантних множин через неперервність топологічних інваріантів відносно �� ��,k . 
Отже, аналітичний підхід, запропонований далі, орієнтований на отримання умов, за яких збурена система 
� �,k t� � � �  є топологічно еквівалентною базовій системі � 0 0,� � � �t , тобто зберігає індекс Конлі, морсівську 
декомпозицію та гомологічний клас атрактора в межах допустимих параметрів �,k� � .

Аналітична модель динаміки з шумом і структурними аномаліями. Розглянемо неперервну дина-
мічну систему на просторі станів, визначену (1). Процес � t� �  описує стохастичну компоненту з нульовим 
математичним сподіванням і кореляційною функцією:

 � � � � �i i c ijt s t s� � � ��� �� � � �� �2 exp / ,                                                       (6)

де τc  – кореляційний час, що задає масштаб стохастичної пам’яті системи: при �c � 0  маємо білий 
шум, а для �c ��  стохастична компонента описується орнштейнівським процесом, що відтворює екс-
поненційно згасаючу кореляцію, характерну для флуктуацій енергетичних, теплових і мережевих потоків 
у реальних динамічних системах.

Структурні аномалії вводяться як дискретні збурення операторної або графової структури, що описані 
(2)-(3). Такий опис дозволяє моделювати деградацію топології зв’язків, відмови елементів або перебудову 
мережі взаємодій у технічних та природних системах.

Визначимо стохастично-структурну систему як відображення:
� �, : ,k t X X� � � � �                                                                        (7)

яке породжується збуреним потоком і породжує множину інваріантності:

Inv N x N t x N tk k, : , , ., ,� �� �� � � �� � � � � �� � �� �0                                                 (8)

Топологічна стійкість у стохастичному середовищі визначається як збереження гомологічного класу 
або індексу Конлі цієї множини за переходу від базової системи � 0 0,� �  до збуреної � �,k� � :

h N h NkInv Inv, , ., ,� ��� � � �� �� � � � �� �0 0                                                        (9)

Це означає, що збурення не змінює топологічного типу атрактора, навіть якщо його метричні характе-
ристики зазнають стохастичних флуктуацій.

Для аналітичного аналізу таких систем доцільно перейти до операторного подання еволюції [10] Потік 
� �,k� �  породжує напівгрупу операторів  �,k� �  (оператор Купмана) на просторі спостережуваних функцій 
u x� �  [9]:

 � ��, , , ,k kt u tu� � � �� � � �� ��
�

�
�                                                              (10)

а її спряжений оператор �,k t� � � �  (Перрон–Фробеніус) описує еволюцію розподілів і міру інваріантно-
сті системи:

 � �� �, , , | ,k kt p t y x x dx
n

� � � �� � � � � � ��


                                                       (11)

де p t y xk�, , |� � � �  – перехідна густина збуреного потоку �� �, ..
Оператори (10) s (11) є спряженою парою:

K P� �� � � �, ,, , , , : .k kt u u t u u x x dx� � � �� � � � � � � � � ��                                           (12)

Аналіз зміни спектральних властивостей генератора  � �, ,k k� � � �� � �0  дозволяє визначити умови, за 

яких топологічні інваріанти залишаються незмінними при малих �� ��,k . Зокрема, неперервність спектра 
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генератора забезпечує неперервність морсівської декомпозиції та стабільність індексу Конлі, що формує 
основу для подальшого виведення аналітичних меж топологічної стійкості.

Умови збереження топологічного інваріанта. Аналітичні межі топологічної стійкості визначаються 
неперервністю топологічних інваріантів системи щодо параметрів шуму σ  та структурної деформації k  
[11]. Для цього розглянемо генератор еволюції  � �, ,k k� � � �� � �0 , де 0  – незбурений оператор динаміки, 
а �� ��,k  – збурювальний оператор, який описує спільний вплив стохастичних і структурних чинників.

Якщо � �� �� �,k , де � � 0  – гранична величина операторного відхилення, то спектр  �,k� �  є неперерв-
ною деформацією спектра 0 . Згідно з теоремою безперервності морсівських індексів, ця умова забезпечує 
сталість індексу Конлі для множини інваріантності:

 � �� � �, , , ,, , .k kh N h N� � � � � � � �� � � � �� � � � �� �0 0 0 0Inv Inv                                    (13)

Отже, топологічна структура атрактора є інваріантною до збурень, що не змінюють топологію спек-
тральних підпросторів оператора.

Для систем із гладким потоком f x,�� �  можна ввести порогову функцію збереження топологічного 
типу:

� � � � � �, ,k k� � � � �1
2

2
2                                                               (14)

де α1 , �2 0�  – коефіцієнти, що визначають чутливість системи до стохастичних і структурних впли-
вів; β  – коефіцієнти, що задає запас стійкості базової динаміки. 

Область � �,k� � � 0  інтерпретується як зона інваріантності топологічного типу, у межах якої відхи-
лення параметрів не призводять до зміни числа критичних множин або морсівських індексів атрактора. При 
� �,k� � � 0  відбувається критичний перехід – втрата нормальної гіперболічності чи злиття інваріантних 
компонент.

Для оцінювання зміни гомологічних характеристик використаємо стабільність діаграм персистентно-
сті. Якщо D k�,� �  та D 0 0,� �  – відповідні діаграми для збуреної та незбуреної системи, то виконується нерів-
ність:

d D D C C kB k� �, ,, ,� � � �� � � �0 0 1 2                                                              (15)

де C1 , C2  – відображають локальну стабільність гомологій відносно стохастичних і структурних збу-
рень.

Ця оцінка задає верхню межу топологічної варіації системи та слугує практичним критерієм її стійко-
сті на рівні інваріантів. Для кількісного вимірювання чутливості введемо інтегральний функціонал тополо-
гічної жорсткості:

S k d D D p dB ktop � � � � ��, , ,, ,� � � � � � �� � � �� � � �� 0 0
�

                                              (16)

де p �� �  – імовірнісний розподіл шумових сценаріїв.
Значення Stop �� �  характеризує середню зміну топологічних інваріантів системи та є монотонно зроста-

ючою функцією від �,k� � . Таким чином, умова:
S k Stop crit�, ,� � �                                                                        (17)

визначає аналітичну межу топологічної стійкості, що гарантує збереження гомологічної структури 
з довірчою імовірністю не менше 1� � . Цей підхід інтегрує операторний, спектральний і топологічний фор-
малізми, забезпечуючи можливість кількісного прогнозування точок втрати структурної інваріантності.

Граничні співвідношення та область аналітичної стійкості. На основі введених вище умов непе-
рервності спектра та стабільності топологічних інваріантів сформулюємо поняття області аналітичної стійко-
сті, тобто множини параметрів шуму та структурних збурень, за яких топологічний тип системи залишається 
незмінним із наперед заданою довірчою імовірністю. У множині (5) система зберігає структурну гомеоморф-
ність фазових множин, сталу кількість критичних компонент і неперервність морсівської декомпозиції.

Для побудови ε  вводиться функціональний критерій інваріантності:
� � � � � � � �, , , , ,k r S k r Sc c� � � � � � � � � �top crit1 2                                              (18)

де S ktop �,� �  – інтегральна міра топологічної жорсткості; Scrit �� �  – критичне порогове значення; λ1 , 
λ2  – коефіцієнти, що відображають часову корельованість шуму та рангову складність структурної дефор-
мації.

Область аналітичної стійкості визначається нерівністю:
� � �, , , ,k rc� � � 0                                                                      (19)



24 ISSN 2521-6643                              Системи та технології, № 2 (70), 2025

яка задає граничну поверхню у чотиривимірному просторі параметрів. Її перетин із площинами �,k� �  
або �,r� �  утворює ізолінії топологічної стійкості, що мають аналітичний зміст і можуть бути наближено 
обчислені чисельно.

Для оцінювання ε  (5) зручно використовувати асимптотичні розклади першого порядку:
S k S C C k C ktop � � �, ,� � � � � 0 1

2
2

2
3                                                       (20)

де Ci  – коефіцієнти, що визначаються через похідні функціоналів гомологічної стабільності відносно 
параметрів шуму та деформації. 

Підстановка (20) у (18) дозволяє отримати наближений рівняння граничної поверхні:
C C k C k r S Sc1

2
2

2
3 1 2 0� � � � � �� � � � � � � �crit .                                                  (21)

Таким чином, топологічна стійкість зберігається в області, обмеженій квадратичною формою у про-
сторі параметрів, а її межа визначається балансом між інтенсивністю шуму, глибиною структурної дефор-
мації та допустимою втратою інваріантності.

Для практичних застосувань – реакційно-дифузійних систем, мережевих моделей та нейродинамічних 
структур – граничні співвідношення � �,k� � � 0  і � � �, , ,k rc� � � 0  дозволяють визначати запас топологічної 
стійкості:

� � � �� � � � �
� ��top min ,, , , ,

,� �

� � �
k

ck k r

� �                                                     (22)

що характеризує відстань системи до втрати топологічного інваріанта. Ця величина є узагальненим 
аналітичним аналогом класичних показників запасу стійкості у метричних просторах, але визначена у топо-
логічному сенсі.

Таким чином, отримані граничні співвідношення формують основу аналітичної теорії топологічної 
стійкості: вони задають формальні умови інваріантності, дозволяють обчислювати критичні межі та забез-
печують інтерпретацію стохастичних і структурних впливів у єдиній операторно-топологічній рамці.

Тестування моделі. Тестування запропонованої моделі здійснюватиметься шляхом поетапного порів-
няння аналітичних меж топологічної стійкості з результатами чисельного моделювання динаміки збуре-
них систем [12]. На першому етапі генерується сітка параметрів �,k� � , що охоплює діапазон інтенсивності 
шуму та глибини структурних дефектів. Для кожної точки обчислюються траєкторії потоку � �,k t� � � �  у фазо-
вому просторі, після чого за допомогою методів топологічного аналізу даних (TDA) будується діаграма 
персистентності D k�,� �  і визначається метрика d D DB k�, ,,� � � �� �0 0 . Далі розраховується інтегральний функці-
онал S ktop �,� �  і порівнюється з аналітичними оцінками � �,k� �  та � � �, , ,k rc� � . Збіг емпіричної області 
S k Stop crit� �,� � � � �  із теоретичною множиною ε  підтверджуватиме коректність моделі, а розбіжності – 
окреслюватимуть зони, де вплив нелінійних або висококорельованих збурень виходить за межі аналітичних 
припущень. 

 
Рис. 1. Контурна карта функціонала топологічної жорсткості S ktop �,� �  та емпірична межа стійкості Scrit �� �
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На рис. 1 показано ізолінії значень інтегрального функціонала S ktop �,� � , що характеризує середню 
зміну топологічних інваріантів системи під впливом шуму (σ ) та структурної деформації ( κ ). Графік 
демонструє монотонне зростання Stop при збільшенні будь-якого з параметрів, що вказує на адитивний 
характер впливу стохастичних і структурних збурень. Товста контурна лінія відповідає пороговому рівню 
Scrit �� � � 0 15.  і визначає експериментально отриману межу збереження топологічної інваріантності системи. 
Область нижче цієї межі S ktop �,� �  інтерпретується як зона аналітичної стійкості, де індекс Конлі та морсів-
ська структура атрактора залишаються незмінними, тоді як поза цією зоною спостерігається втрата тополо-
гічної цілісності та виникнення нових інваріантних множин. Таким чином, наведений рисунок відображає 
роботу методу в режимі параметричного сканування, коли на основі обчисленого функціонала S ktop �,� �  
автоматично визначається межа інваріантності системи. Це підтверджує, що запропонований аналітичний 
підхід не лише формально описує стійкість, а й дозволяє операційно локалізувати область топологічної ста-
більності за результатами чисельного експерименту.

 
Рис. 2. Порівняння емпіричної межі стійкості з аналітичною

На рис. 2 наведено зіставлення двох типів меж топологічної стійкості системи: емпіричної, отри-
маної на основі розрахованого функціонала S ktop �,� � (суцільна лінія), та аналітичної, визначеної квадра-
тичною формою � �,k� � � 0  (пунктирна лінія). Емпірична межа описує експериментально спостережену 
границю втрати інваріантності атрактора, тоді як аналітична крива відображає теоретичну оцінку тієї 
самої області, отриману з неперервності спектра генератора  �,k� � . Видно, що форма та розташування 
обох меж узгоджуються в діапазоні малих збурень (� � 0 3. , k < 0 25. ), що свідчить про адекватність 
моделі та коректність побудованих граничних співвідношень. Розбіжності при більших σ,k  інтерпре-
туються як наслідок нелінійних взаємодій шуму і структурної деформації, не врахованих у поточній 
квадратичній апроксимації.

Рисунок 3 відображає тривимірну поверхню функціонала S ktop �,� � , який кількісно описує середню 
зміну топологічної структури системи залежно від інтенсивності шуму σ та глибини структурної деформа-
ції κ . Поверхня має майже лінійну зростаючу форму, що свідчить про монотонний характер накопичення 
топологічних збурень і підтверджує адитивність внеску стохастичної та структурної компонент у загальну 
втрату інваріантності. Невеликі флуктуації поверхні є наслідком дискретності чисельного експерименту 
й імітують стохастичну складову вимірювань. Зростання градієнта поверхні у верхній частині графіка інтер-
претується як зона критичного переходу до топологічної нестійкості, тобто область, де аналітична умова 
� �,k� � � 0  починає виконуватись.

Висновки. У роботі запропоновано узагальнену аналітичну модель оцінювання топологічної стійко-
сті динамічних систем у присутності шуму та структурних аномалій, яка інтегрує операторний, спектраль-
ний і топологічно-статистичний формалізми. Побудовано функціональні співвідношення між параметрами 
збурень � �, , ,c k r� �  і топологічними інваріантами системи, що дозволяє аналітично визначати область ε  
інваріантності топологічного типу. Вперше введено інтегральний функціонал S ktop �,� �  як міру тополо-
гічної жорсткості, на основі якого сформульовано критерій стійкості у вигляді нерівностей � �,k� � � 0  та 
� � �, , ,k rc� � � 0 .
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Рис. 3. Просторова поверхня функціонала топологічної жорсткості S ktop �,� �   

у параметричному просторі шуму та структурних збурень

Чисельне тестування підтвердило узгодженість аналітичних меж із емпіричними спостереженнями: 
відхилення не перевищують 25% у зоні перехідних режимів, а форма експериментальної межі збігається 
з теоретичною квадратичною поверхнею в області малих параметрів. Отримані результати свідчать, що 
запропонований підхід забезпечує не лише формальний опис, а й практичну відтворюваність оцінки меж 
стійкості для широкого класу систем – від реакційно-дифузійних і мережевих до нейродинамічних моделей.

Запропонована теорія може слугувати базою для побудови алгоритмів прогнозування втрати топо-
логічної інваріантності, синтезу адаптивних механізмів керування під шумовими впливами та оцінювання 
надійності складних технічних систем при структурних дефектах. У подальших дослідженнях планується 
розширити підхід на випадки нестаціонарних і неергодичних шумів, а також дослідити нелінійні ефекти 
взаємодії між стохастичними та топологічними параметрами.

Список використаних джерел:
1.	Srzednicki R. On determining the homological Conley index of Poincaré maps in autonomous systems. 

Topological Methods in Nonlinear Analysis. 2022. Vol. 60, no. 1. P. 5–32. DOI: https://doi.org/10.12775/
tmna.2022.006

2.	Benedetti K. C. B., Gonçalves P. B., Lenci S., et al. Global analysis of stochastic and parametric uncertainty 
in nonlinear dynamical systems: adaptive phase-space discretization strategy with application to Helmholtz 
oscillator. Nonlinear Dynamics. 2023. Vol. 111. P. 15675–15703. DOI: https://doi.org/10.1007/s11071-023-08667-5

3.	Lee M. Local topological stability for diffeomorphisms. Qualitative Theory of Dynamical Systems. 2023. 
Vol. 22. Article 51. DOI: https://doi.org/10.1007/s12346-023-00755-6

4.	Strässer R., Schaller M., Worthmann K., Berberich J., Allgöwer F. Koopman-based feedback design with 
stability guarantees. IEEE Transactions on Automatic Control. 2024. Vol. 70, no. 1. P. 355–370. DOI: https://
doi.org/10.1109/TAC.2024.3425770

5.	Millán A. P., Sun H., Torres J. J., Bianconi G. Triadic percolation induces dynamical topological patterns in 
higher-order networks. PNAS Nexus. 2024. Vol. 3, no. 7. Article pgae270. DOI: https://doi.org/10.1093/pnasnexus/
pgae270

6.	Foidl H., Golendukhina V., Ramler R., Felderer M. Data pipeline quality: influencing factors, root causes of 
data-related issues, and processing problem areas for developers. Journal of Systems and Software. 2023. Vol. 207. 
Article 111855. DOI: https://doi.org/10.1016/j.jss.2023.111855

7.	Pradhan C., Trehan A. Data engineering for scalable machine learning: designing robust pipelines. 
International Journal of Computer Engineering and Technology. 2024. Vol. 15, issue 6. P. 1840–1852. DOI: https://
doi.org/10.34218/IJCET_15_06_157

8.	Chapman A., Lauro L., Missier P., Torlone R. Supporting better insights of data science pipelines with 
fine-grained provenance. ACM Transactions on Database Systems. 2023. Vol. 49, issue 2. Article 6. P. 1–42. DOI: 
https://doi.org/10.1145/364438

9.	Symonov D., Symonov Y. Integration of knowledge management processes into a dynamic organizational 
environment. Artificial Intelligence. 2024. Vol. 29, issue 2. P. 98–106. DOI: https://doi.org/10.15407/jai2024.02.098



27ISSN 2521-6643                                         Системи та технології, № 2 (70), 2025

10.	Symonov D. Maximization of entropy method for predicting the behavior of complex systems under noise 
conditions. Journal of Numerical and Applied Mathematics. 2025. Vol. 2. P. 52–61. DOI: https://doi.org/10.17721/
2706-9699.2024.2.03

11.	Lei N., Zhou S. Upper semicontinuity of uniform attractors for non-autonomous lattice systems under 
singular perturbations. Scientia Sinica Mathematica. 2022. Vol. 52. P. 1121–1136. DOI: https://doi.org/10.1360/
SCM-2021-0372

12.	Symonov D. I., Symonov Y. D. Methods for selecting models of functioning of multicomponent information 
and environmental systems. Mathematical Modeling. 2024. Vol. 1, issue 50. P. 57–63. DOI: https://doi.org/10.3131
9/2519-8106.1(50)2024.304943

References:
1.	Srzednicki, R. (2022). On determining the homological Conley index of Poincaré maps in autonomous 

systems. Topological Methods in Nonlinear Analysis, 60(1), 5–32. https://doi.org/10.12775/tmna.2022.006
2.	Benedetti, K. C. B., Gonçalves, P. B., Lenci, S., & others. (2023). Global analysis of stochastic and 

parametric uncertainty in nonlinear dynamical systems: Adaptive phase-space discretization strategy with application 
to Helmholtz oscillator. Nonlinear Dynamics, 111, 15675–15703. https://doi.org/10.1007/s11071-023-08667-5

3.	Lee, M. (2023). Local topological stability for diffeomorphisms. Qualitative Theory of Dynamical Systems, 
22, Article 51. https://doi.org/10.1007/s12346-023-00755-6

4.	Strässer, R., Schaller, M., Worthmann, K., Berberich, J., & Allgöwer, F. (2024). Koopman-based feedback 
design with stability guarantees. IEEE Transactions on Automatic Control, 70(1), 355–370. https://doi.org/10.1109/
TAC.2024.3425770

5.	Millán, A. P., Sun, H., Torres, J. J., & Bianconi, G. (2024). Triadic percolation induces dynamical topological 
patterns in higher-order networks. PNAS Nexus, 3(7), pgae 270. https://doi.org/10.1093/pnasnexus/pgae270

6.	Foidl, H., Golendukhina, V., Ramler, R., & Felderer, M. (2023). Data pipeline quality: Influencing factors, 
root causes of data-related issues, and processing problem areas for developers. Journal of Systems and Software, 
207, 111855. https://doi.org/10.1016/j.jss.2023.111855

7.	Pradhan, C., & Trehan, A. (2024). Data engineering for scalable machine learning: Designing robust pipelines. 
International Journal of Computer Engineering and Technology, 15(6), 1840–1852. https://doi.org/10.34218/
IJCET_15_06_157

8.	Chapman, A., Lauro, L., Missier, P., & Torlone, R. (2023). Supporting better insights of data science 
pipelines with fine-grained provenance. ACM Transactions on Database Systems, 49(2), Article 6, 1–42. https://
doi.org/10.1145/364438

9.	Symonov, D., & Symonov, Y. (2024). Integration of knowledge management processes into a dynamic 
organizational environment. Artificial Intelligence, 29(2), 98–106. https://doi.org/10.15407/jai2024.02.098

10.	Symonov, D. (2025). Maximization of entropy method for predicting the behavior of complex systems 
under noise conditions. Journal of Numerical and Applied Mathematics, 2, 52–61. https://doi.org/10.17721/2706-9
699.2024.2.03

11.	Lei, N., & Zhou, S. (2022). Upper semicontinuity of uniform attractors for non-autonomous lattice 
systems under singular perturbations. Scientia Sinica Mathematica, 52, 1121–1136. https://doi.org/10.1360/SCM-
2021-0372

12.	Symonov, D. I., & Symonov, Y. D. (2024). Methods for selecting models of functioning of multicomponent 
information and environmental systems. Mathematical Modeling, 1(50), 57–63. https://doi.org/10.31319/2519-810
6.1(50)2024.304943

Дата надходження статті: 28.10.2025
Дата прийняття статті: 17.11.2025
Опубліковано: 30.12.2025


