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НЕЙРОМЕРЕЖЕВА МОДЕЛЬ ПРОГНОЗУВАННЯ РІВНЯ РИЗИКУ ІМПЛАНТАЦІЙНОГО 
ЛІКУВАННЯ ПАЦІЄНТІВ ІЗ ПАТОЛОГІЄЮ ШЛУНКОВО-СТРАВОХІДНОГО З’ЄДНАННЯ 

У статті представлено математичну модель прогнозування рівня ризику можливості імплантації терапевтичних 
пристроїв у пацієнтів із патологією шлунково-стравохідного з’єднання на основі штучної нейронної мережі типу бага-
тошарового перцептрона (Multilayer Perceptron, MLP). Модель інтегрує 15 клінічних, ендоскопічних та морфометричних 
показників, що відображають як функціональний стан стравоходу, так і структурні зміни слизової оболонки. Для побу-
дови моделі використано вибірку з 558 спостережень (401 – навчальна, 157 – тестова), що забезпечило статистично 
достовірну оцінку її прогностичної ефективності. Архітектура мережі включає вхідний шар із 50 параметрів (після 
кодування змінних), один прихований шар із 7 нейронами та вихідний шар із 5 вузлів, які відповідають рівням ризику (0–4). 
Навчання здійснювалося методом зворотного розповсюдження помилки з використанням оптимізатора Scaled Conjugate 
Gradient. Модель продемонструвала надзвичайно високу точність класифікації – 99,8 % для навчальної та 99,4 % для 
тестової вибірок, при цьому значення площі під ROC-кривими (AUC) для кожного класу становили 1. Така стабільність 
свідчить про відсутність перенавчання та високу узагальнювальну здатність моделі. Найбільший внесок у формування 
прогнозу мають морфометричні параметри, що характеризують ступінь пролабування шлунка в стравохід, показники 
діафрагмального звуження та розташування Z-лінії, а також ендоскопічні ознаки ураження слизової – наявність ерозій 
і виразок, вкритих гематином. Отримані результати демонструють потенціал нейромережевого підходу для автомати-
зованої стратифікації пацієнтів за рівнем ризику та обґрунтованого вибору інтервенційних стратегій (зокрема імплан-
тації систем Bravo, JSPH-1, BEST Capsule, EndoStim тощо). Запропонована модель може стати основою для створення 
інтелектуальної системи підтримки клінічних рішень, що підвищує точність діагностики, сприяє персоналізації ліку-
вання та знижує ризики необґрунтованих інвазивних втручань у гастроентерологічній практиці.

Ключові слова: багатошаровий перцептрон, штучна нейронна мережа, класифікація, клінічне прогнозування, 
ендоскопічні показники, ризик імплантації.

Halushko O. I. Neural network model for predicting risk level of implantation treatment in patients with gastroesophageal 
junction pathology

The article presents a mathematical model for predicting the risk level of potential therapeutic device implantation in 
patients with gastroesophageal junction pathology, based on a multilayer perceptron (MLP) artificial neural network. The model 
integrates 15 clinical, endoscopic, and morphometric indicators reflecting both the functional state of the esophagus and struc-
tural changes in the mucosa. The model was developed using a dataset of 558 observations (401 for training, 157 for testing), 
ensuring a statistically reliable assessment of its predictive performance.

The network architecture includes an input layer with 50 parameters (after variable encoding), a single hidden layer with 
7 neurons, and an output layer with 5 nodes corresponding to risk levels (0–4). Training was performed using the backpropaga-
tion algorithm with the Scaled Conjugate Gradient optimizer. The model demonstrated extremely high classification accuracy 
– 99.8 % for the training set and 99.4 % for the test set, with the area under the ROC curves (AUC) for each class equal to 1. 
Such stability indicates the absence of overfitting and high generalization ability of the model.

The greatest contribution to the prediction comes from morphometric parameters characterizing the degree of gastric 
prolapse into the esophagus, diaphragmatic constriction indices, and the position of the Z-line, as well as endoscopic features of 
mucosal damage, including the presence of erosions and ulcers covered with hematin. The results demonstrate the potential of 
the neural network approach for automated patient stratification by risk level and informed selection of interventional strategies 
(including the implantation of Bravo, JSPH-1, BEST Capsule, EndoStim systems, etc.).

The proposed model could serve as a foundation for the development of an intelligent clinical decision support system, 
improving diagnostic accuracy, enabling personalized treatment, and reducing the risks of unjustified invasive interventions in 
gastroenterological practice.

Key words: multilayer perceptron, artificial neural network, classification, clinical prediction, endoscopic indicators, 
implantation risk.
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Постановка проблеми. Одним із ключових напрямів сучасної прикладної математики є розроблення 
математичних моделей для аналізу, прогнозування та підтримки прийняття рішень у медичних системах, де 
вихідні дані мають змішану природу (кількісні, якісні, порядкові змінні) та характеризуються складними 
нелінійними взаємозв’язками. Особливої актуальності це набуває при моделюванні клінічних процесів, 
пов’язаних із патологією шлунково-стравохідного з’єднання, де традиційні статистичні методи (дискримі-
нантний аналіз, логістична регресія тощо) часто виявляються недостатньо ефективними через невиконання 
припущень лінійності, нормальності розподілу та ін.

Задача класифікації пацієнтів за рівнем ризику розвитку ускладнень або необхідності імплантації 
медичних пристроїв є багатовимірною та стохастичною за своєю природою. Вона вимагає побудови алго-
ритмів, здатних до апроксимації складних функцій розподілу ознак у багатовимірному просторі та до уза-
гальнення на нових даних. З математичної точки зору це відповідає задачі побудови функціонального відо-
браження, яке мінімізує функцію помилки класифікації або крос-ентропійних втрат на множині навчальних 
спостережень.

Застосування штучних нейронних мереж, зокрема багатошарового перцептрона (Multilayer Perceptron, 
MLP), дозволяє реалізувати цю задачу за рахунок побудови нелінійних відображень, що узагальнюють 
інформацію між вхідними параметрами різної природи. Однак практична реалізація таких моделей у медич-
них задачах потребує: формалізації структури моделі з урахуванням обмеженого обсягу клінічних даних; 
вибору адекватного алгоритму оптимізації, який забезпечує збіжність при складній функції втрат; аналізу 
стабільності та узагальнювальної здатності моделі на незалежних вибірках.

Таким чином, математична постановка дослідження полягає у побудові, параметричній ідентифікації 
та оцінюванні ефективності нейромережевої моделі типу MLP, яка інтегрує клінічні, ендоскопічні та мор-
фометричні показники для прогнозування груп ризику для лікувальної імплантації у пацієнтів із патологією 
шлунково-стравохідного з’єднання. З практичного боку це спрямовано на створення обчислювально ефек-
тивного інструменту прогнозної аналітики, а з математичного – на розроблення та дослідження властивос-
тей нелінійної класифікаційної функції, оптимізованої за критерієм крос-ентропійних втрат.

Аналіз останніх досліджень і публікацій. За останнє десятиліття в прикладній медицині та біомоде-
люванні спостерігається стійка тенденція до впровадження методів машинного навчання, зокрема штучних 
нейронних мереж, для задач класифікації та прогнозування клінічних подій. Наприклад, дослідження пока-
зали, що MLP моделі можуть ефективно використовуватися для прогнозування серцево-судинних захво-
рювань за допомогою оптимізації гібридного алгоритму MLP-PSO (Multilayer Perceptron з Particle Swarm 
Optimization) із точністю приблизно 84,6 % [1]. У іншому дослідженні MLP-модель була застосована для 
прогнозування виживання пацієнтів з імплантованими кардіовертерами-дефібриляторами (ICD/CRT-D) 
і показала перевагу над класичними методами [2]. Ці результати підтверджують, що MLP підходи мають 
потенціал для медичних задач із багатовимірними ознаками та неоднорідними типами даних.

У контексті гастроентерології, зокрема патології шлунково-стравохідного з’єднання, машинне нав-
чання також набуває значення. Огляд [3] демонструє, що моделі машинного навчання досягають точності 
80–90 % у задачах класифікації рефлюксних захворювань та супутніх станів. Наприклад, дослідження [4] 
показало 100 % точність нейромережі у невеликій вибірці з 159 пацієнтів при діагностиці гастроезофагеаль-
ної рефлюксної хвороби. У дослідженні [5] використана нейронна мережа для автоматичної класифікації за 
Лос-Анджелівською шкалою рефлюкс-езофагіту з точність до 99,2 % на тренувальній вибірці. Таким чином, 
існує переконливе підґрунтя для застосування нейромереж у задачах, близьких до нашої: багатофакторного 
прогнозування клінічних та морфологічних станів.

Проте у публікаціях також підкреслюються виклики та обмеження: проблема невеликих вибірок, 
балансування класів, адекватне кодування порядкових та номінальних змінних, ризик перенавчання та 
недостатня інтерпретованість моделей. У системному огляді [6] зазначено, що MLP-моделі хоч і отримали 
широке застосування, але залишаються чутливими до малого обсягу даних та мають проблеми із поясню-
вальною здатністю. У статті [7] продемонстровано, що оптимізація MLP-архітектури значно підвищує її 
продуктивність у “шумних” і нелінійних наборах клінічних даних. Крім того, хоча застосування нейроме-
реж для відбору пацієнтів до імплантаційних процедур менш розроблене, у статті [8] акцентується увага на 
можливості нейромереж для прогнозування успішності імплантацій (наприклад стоматологічних) і наголо-
шується важливість інтеграції моделей із клінічною практикою. 

Таким чином, незважаючи на значний прогрес, необхідна подальша адаптація та валідація моделей саме 
у контексті імплантаційних медичних пристроїв, із урахуванням багатовимірних даних та клінічних вимог.

Метою статті є розробка та математичне обґрунтування нейромережевої моделі для прогнозування 
рівня ризику можливості імплантації лікувальних пристроїв у пацієнтів із патологією шлунково-стравохід-
ного з’єднання. Модель базується на інтеграції клінічних, ендоскопічних та морфометричних показників 
пацієнтів із використанням архітектури багатошарового перцептрона.

Виклад основного матеріалу. У даному дослідженні побудовано математичну модель на основі бага-
тошарового перцептрона (MLP), яка інтегрує клінічні, ендоскопічні та морфометричні показники пацієнтів 
для прогнозування рівня ризику необхідності імплантації діагностичних та/або терапевтичних пристроїв, 
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зокрема систем Bravo, JSPH-1, BEST Capsule, EndoStim для стимуляції нижнього стравохідного сфінктера, 
а також капсульних датчиків Smart nanowire та ін. у пацієнтів із патологією шлунково-стравохідного з’єд-
нання [9].

Метою моделювання є підвищення точності та об’єктивності клінічного прийняття рішень шляхом 
автоматизованої оцінки ризику на основі багатофакторних вхідних даних.

Для побудови моделі використано 15 змінних, що відображають як клінічні симптоми, так і мор-
фологічні характеристики стравоходу та шлунково-стравохідного переходу: наявність гіперемії слизової 
в субкардіальній ділянці (бінарна змінна); скарги на печію (бінарна змінна); скарги на відчуття регургітації 
(бінарна змінна); наявність дефектів слизової класифікованих за Лос-Анджелівською класифікацією оцінки 
рефлюкс-езофагіту (порядкова змінна); наявність ерозій вкритих фібрином (бінарна змінна); наявність еро-
зій вкритих гематином (бінарна змінна); наявність виразок вкритих фібрином (бінарна змінна); наявність 
виразок вкритих гематином (бінарна змінна); показник розташування Z-лінії (кількісна змінна); висота верх-
нього стравохідного сфінктера (кількісна змінна); показник діафрагмального звуження (кількісна змінна); 
показник висоти пролабування шлунка в стравохід або кардіальну ділянку шлунка (кількісна змінна); про-
тяжність пролабування (кількісна змінна); наявність гіперемії в нижній третині стравоходу (бінарна змінна); 
куріння (бінарна змінна).

На основі вибірки з 558 пацієнтів ендоскопічного відділення комунального некомерційного підпри-
ємства «Кіровоградська обласна лікарня Кіровоградської обласної ради» та їх клінічних характеристик 
(15  змінних) лікарі змогли встановити рівні ризику для лікувальної імплантації. Було виділено 5 рівнів 
ризику: 0 (відсутній ризик) – ймовірність розвитку ускладнень мінімальна; 1 (низький ризик) – ймовірність 
ускладнень мінімальна, наслідки незначні, добре контрольовані; 2 (середній ризик) – ймовірність усклад-
нень помірна; 3 (високий ризик) – ймовірність ускладнень підвищена; 4 (критичний ризик) – ймовірність 
ускладнень висока. 

Для побудови предиктивної моделі класифікації пацієнтів за групами ризику використано бага-
тошаровий перцептрон, реалізований у статистичному пакеті IBM SPSS за допомогою методів Neural 
Networks [10].

Модель належить до класу штучних нейронних мереж прямого поширення сигналу (feedforward neural 
networks), де кожен шар з’єднаний лише із наступним, а навчання здійснюється методом зворотного розпов-
сюдження помилки (backpropagation).

У нашому випадку маємо N = 558  (із них Ntrain = 401  тренувальні (72,1%), Ntest =155  тестувальні 
(27,9%)). Позначимо оригінальний набір ознак (перед кодуванням) як
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Архітектура MLP складається з трьох основних рівнів:
1.	Вхідний шар: D = 50  змінних.
2.	Прихований шар: один шар із H = 7  нейронів, активаційна функція – гіперболічний тангенс:

f z z
e e

e e

z z

z z� � � � � � �
�

�

�tanh .

3.	Вихідний шар: 5 нейронів (по одному для кожної групи ризику), активаційна функція – Softmax:

g z
e

e
k

z

r

z

k

r

� � �
�� 0

4 .
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На рис. 1 подано структуру побудованої нейронної мережі, яка складається з вхідного шару розмірні-
стю D = 50 , одного прихованого шару з сімома нейронами та одного вузла зміщення (bias), що забезпечує 
корекцію порогу активації. Для нейронів прихованого шару використано активаційну функцію гіперболіч-
ного тангенса, яка дозволяє відобразити нелінійні зв’язки між вхідними параметрами. Вихідний шар містить 
п’ять нейронів, що відповідають градаціям ризику (від мінімального до максимального), із Softmax-актива-
цією для нормалізації ймовірностей. Така архітектура забезпечує здатність моделі узагальнювати інформа-
цію та розпізнавати складні комбінації клініко-ендоскопічних ознак.

 
Рис. 1. Архітектура багатошарового перцептрона (MLP) для класифікації рівнів ризику
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Далі застосовуються формули прямого проходу.
Для прихованого шару:

z x b h z jj
d

D

jd d
i

j j j
1

1

1 1 1 1 1� �

�

� � � � � � � � � �� � � � � ��� , tanh ,� � � � � � � � ,, , ,� H

де d  – індекс ознаки ( d D� �1, , ); j  – індекс нейрона у прихованому шарі ( j H� �1, , ); xd
i� �  – зна-

чення d -ї ознаки для i -го пацієнта; � jd
1� �  – вага зв’язку між d -ю вхідною ознакою та j -м нейроном при-

хованого шару; z j
1� �  – зважена сума вхідних сигналів, до активації («чиста активація нейрона»); hj

1� �  – вихід 
нейрона після застосування функції активації tanh  (передається далі у вихідний шар).

Для вихідного шару:

z h b y
e

e
k

j

H

kj j k k

i
z

r

z

k

r

2

1

2 1 2

0

4

2

2

� �

�

� � � � � � � �

�

� � ��
�

� �

� �� , ,� � � � �� � �k � �0 4, , ,

де k  – індекс групи ризику ( k � �1 5, , ); �kj
2� �  – вага між j -м нейроном прихованого шару і k -м ней-

роном вихідного шару; bk
2� �  – зсув вихідного нейрона для класу k ; zk

2� �  – лінійна комбінація сигналів з при-
хованого шару для класу k ; yk

i


� �
 – прогнозована ймовірність, що пацієнт i  належить до групи ризику k .

Отже, на цьому кроці на вхід подається вектор �x x xi i
D
i� � � � � �� ��

�
�
�1 , , .

'

 Кожен прихований нейрон j  обчис-
лює зважену суму вхідних сигналів z j

1� �  і застосовує нелінійність tanh . Вихідні нейрони (по одному для 
кожної з 5 груп ризику) беруть ці 7 значень hj

1� � , знову комбінують їх лінійно і через Softmax отримують 
набір ймовірностей y y

i i
 

1 5

� � � �
�, , � . Найвища імовірність – це передбачений клас пацієнта.

Навчання мережі виконується шляхом мінімізації функції крос-ентропійних втрат:

E y ln y
i

N

k
k
i

k

itrain

� � � �
� �

� � � �
��

1 0

4
 .

Оновлення параметрів здійснюється за допомогою Scaled Conjugate Gradient (SCG) – методу оптиміза-
ції другого порядку, який швидше сходиться, ніж стандартний стохастичний градієнтний спуск.

Матриці ваг першого шару W jd
H D1 1� � � � �� ��

�
���   та другого шару W kj

K H2 2� � � � �� ��
�
���  , а також вектори 

зміщень b b bH
1

1
1 1� � � � � �� ��

�
�
�, ,

'

 та b b bK
2

1
2 2� � � � � �� ��

�
�
�, ,

'

 отримуються в результаті навчання наступним чином.
В SPSS відбувається ініціалізація ваг випадковими числами (наприклад, з рівномірного або нормаль-

ного розподілу навколо нуля):
� �jd kj

1 2� � � ��� � �� �~ , , ~ , .U Uε ε ε ε� � �

Далі ці параметри змінюються в процесі мінімізації функції втрат E �� �  (крос-ентропії), де 
� �� �� � � � � � � �W b W b1 1 2 2, , ,  – множина всіх параметрів мережі.

Для оптимізації необхідно обчислити градієнти ��E . Для батчевого режиму (весь тренувальний набір) 
градієнти агрегуються по всіх i . Для одного спостереження i  маємо наступні похідні:

–	 для вихідного шару
�

�
� �� �� �

� � � �E

z
y y

k
i k

i

k
i

2
 ;

–	 для ваг вихідного шару

�
�

� �� �� �
�

� � � � � �� ��E
y y h

kj i

N

k

i

k
i

j
i

train

� 2
1

1
 ;

–	 для зміщень вихідного шару 

�
�

� �� �� �
�

� � � ��E

b
y y

k i

N

k

i

k
i

train

2
1

 ;

–	 для ваг прихованого шару

�
�

� �� ��

�
�

�

�
� �� �

� �

� � � � � � � �� �E
y y h

jd i

N
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K
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i
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2 11
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� �
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;
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–	 для зміщень прихованого шару: 

�
�

� �� ��

�
�

�

�
� �� �

� �

� � � � � � � �� �E

b
y y h

j i

N

k

K

k

i

k
i

kj j
i

train

1
1 1

2 11 � �� �� ��
�
� �

�
�

2

,

де множник 1 1
2

� � �� �� �hj
i є похідною функції активації tanh  по z j

i1� �� � . Цей множник обов’язковий, так як 
без нього градієнт буде невірним, і навчання мережі не працюватиме правильно.

SPSS Neural Networks оптимізує E �� �  за допомогою методу Scaled Conjugate Gradient (SCG):
� �

�

* .� � �argmin E

Метод SCG будує послідовність спряжених напрямів оновлення p t� � , які залежать від градієнтів ��E ,  
і обирає масштабований крок � t� �  без явного параметру навчання. Формула оновлення параметрів має вигляд:

� � �t t t t�� � � � � � � �� �1 p ,

де � � � �� � � � � � � �W b W b1 1 2 2, , , .
Навчання в статистичному пакеті SPSS зупиняється, якщо виконується хоча б одна з умов:
1.	 E Et t�� � � � �� � �1 410� ;
2.	відношення помилок тренувальної та тестової вибірок �≤ 0 001, ;
3.	максимальний час навчання перевищує 15 секунд.
Після мінімізації функції втрат E �� �  отримаємо оптимальні оцінки параметрів:

W b W b E1 1 2 2� � � � � � � �� � � � �, , , ,argmin
�

�

які є числовою реалізацією знайденого мінімуму функції E .
Після завершення процесу навчання багатошарового перцептрона (MLP) було проведено оцінку його ефек-

тивності на основі статистичних показників якості класифікації. Модель продемонструвала високий рівень узгодже-
ності між навчальною та тестовою вибірками, що свідчить про її стабільність та відсутність ознак перенавчання.

У нашій моделі отримано такі показники ефективності: помилка крос-ентропії (Training) – 3,096; 
помилка крос-ентропії (Testing) – 4,506; відсоток неправильних класифікацій (Training) – 0,2%; відсоток 
неправильних класифікацій (Testing) – 0,6%; площа під ROC-кривою (AUC) для кожного класу – 1, що свід-
чить про ідеальну роздільну здатність моделі щодо ідентифікації пацієнтів із різними рівнями ризику.

Із таблиці 1 бачимо, що для навчальної вибірки (401 спостереження) точність класифікації склала 
99,8%, при цьому всі групи (0–4) були розпізнані практично безпомилково. Найменша неточність спосте-
рігається лише у групі 2 (1 хибна класифікація з 229 випадків). Для тестової вибірки (155 спостережень) 
точність становила 99,4%, що свідчить про відмінну узагальнювальну здатність моделі (тобто відсутність 
ознак перенавчання). Лише один випадок із групи 1 був віднесений до групи 2. Загалом модель ефективно 
ідентифікує пацієнтів із різними рівнями ризику, забезпечуючи стабільну класифікацію як на тренувальних, 
так і на незалежних тестових даних.

Таблиця 1
Матриця класифікації для моделі MLP

Вибірка Спостережена 
група ризику

Передбачена група ризику

0 1 2 3 4 % правильних 
класифікацій

Навчальна

0 2 0 0 0 0 100,0%
1 0 132 0 0 0 100,0%
2 0 1 228 0 0 99,6%
3 0 0 0 31 0 100,0%
4 0 0 0 0 7 100,0%

Загальний % 0,5% 33,2% 56,9% 7,7% 1,7% 99,8%

Тестова

0 1 0 0 0 0 100,0%
1 0 59 1 0 0 98,3%
2 0 0 79 0 0 100,0%
3 0 0 0 14 0 100,0%
4 0 0 0 0 1 100,0%

Загальний % 0,6% 38,1% 51,6% 9,0% 0,6% 99,4%
Залежна змінна: Група ризику
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Отримані результати підтверджують високу точність побудованої нейронної мережі та її придатність 
для клінічного прогнозування рівня ризику у пацієнтів із патологією шлунково-стравохідного з’єднання.

На (рис. 2) показано розподіл передбачених ймовірностей належності пацієнтів до п’яти груп ризику, 
отриманих на тестовій вибірці. Для більшості випадків спостерігається висока передбачена ймовірність 
належності до «власної» групи (наближена до 1), що свідчить про стабільність класифікації та високу впев-
неність моделі. Перекриття між класами мінімальне, що підтверджує ефективність розділення пацієнтів за 
рівнем ризику.

 
Рис. 2. Графік передбачених псевдоймовірностей для моделі MLP

На (рис. 3) відображено співвідношення між часткою вибірки (вісь X ) та накопичуваним відсотком 
правильно класифікованих спостережень (вісь Y ). 

 
Рис. 3. Крива приросту для моделі MLP при класифікації пацієнтів за рівнями ризику

Зауважимо, що на рис. 3 криві для груп 0, 3 та 4 наклалися одна на одну. Це пов’язано з тим, що модель 
забезпечила майже однаковий розподіл прогнозованих ймовірностей для цих груп, а отже – подібну дина-
міку зростання частки правильно класифікованих спостережень при збільшенні відсотка вибірки. Такий 
ефект не свідчить про помилку моделі, а відображає високу однорідність прогнозів і стабільність класифі-
кації у відповідних категоріях ризику. 
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Крива демонструє, що модель MLP ефективно ідентифікує пацієнтів критичного рівня ризику 4 (відпо-
відно і для рівнів 0 та 3) вже на ранніх відсотках вибірки, що свідчить про її високу дискримінативну здатність.

Для кожної вхідної змінної d  оцінюємо її внесок у формування вихідного прогнозу. В SPSS вико-
ристовується агрегування абсолютних вагових шляхів від входу до виходу:

Imp d
j

H

k

K

jd kj� � �
� �

� � � ���
1 1

1 2� � .

Після виконується нормування відносно найбільшого значення:

NormImp
Imp

Imp
d

d

d
d

� � � �
� �
� ��

�

100%
max

.

Цей показник визначає, які саме змінні найбільше впливають на мінімізацію функції E . Зауважимо, 
що обчислення проводиться без урахування знаків ваг, тобто враховується лише абсолютна величина впливу 
зв’язків. У таблиці 2 наведені відповідні значення внесків.

Таблиця 2
Важливість незалежних змінних у моделі MLP для прогнозування рівня ризику імплантації 

лікувальних пристроїв
Вхідні змінні xd Imp d� � NormImp d� � Медична інтерпретація

Наявність гіперемії слизової в 
субкардіальній ділянці 0,022 12,3% Локальні запальні зміни слизової у 

субкардіальній зоні.
Скарги на печію 0,022 12,1% Суб’єктивний симптом кислотного 

рефлюксу.
Скарги на відчуття регургітації 0,019 10,6% Характерна скарга, що супроводжує 

гастроезофагеальний рефлюкс.
Наявність дефектів слизової, 
класифікованих за Лос-Андже-
лівською класифікацією оцінки 
рефлюкс-езофагіту

0,035 19,2%
Об’єктивний показник ступеня ура-
ження слизової стравоходу.

Висота верхнього стравохідного 
сфінктера 0,051 28,2%

Морфометричний параметр, що 
характеризує функціональний рівень 
сфінктера.

Показник протяжності пролабу-
вання 0,181 100,0%

Основний морфологічний показник 
ступеня пролабування шлунка. Має 
найвищий рівень впливу

Показник діафрагмального 
звуження 0,059 32,5% Анатомічний показник діафрагмаль-

ного кільця.
Показник висоти пролабування 
шлунка в стравохід або кардіаль-
ну ділянку шлунка

0,103 56,7%
Відображає висоту зміщення шлун-
ку відносно діафрагми.

Куріння 0,021 11,5% Поведінковий фактор ризику.
Показник розташування Z-лінії

0,034 18,7%
Морфологічний показник перехо-
ду епітелію стравоходу в епітелій 
шлунка.

Наявність ерозій, вкритих фі-
брином 0,029 16,2% Ознака гострих поверхневих ура-

жень слизової.
Наявність ерозій, вкритих гема-
тином 0,158 86,9%

Показник перенесених ерозивних 
процесів або мікрокровотеч. Має 
високий рівень впливу

Наявність виразок, вкритих 
фібрином 0,045 24,8% Ознака активного виразкового про-

цесу.
Наявність виразок, вкритих 
гематином 0,160 88,3%

Ознака загоєних або хронічних 
виразкових уражень. Має високий 
рівень впливу

Наявність гіперемії в нижній 
третині стравоходу 0,060 33,3% Показник запальних змін у нижній 

частині стравоходу.
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Отримані результати показують, що високу прогностичну вагу у нейромережевій моделі мають морфо-
метричні показники: зокрема показник протяжності пролабування (100 %), показник висоти пролабування 
шлунка в стравохід або кардіальну ділянку шлунка (56,7 %) та показник діафрагмального звуження (32,5 %).

До високого рівня впливу також віднесено параметри, що характеризують ступінь ураження слизової – 
наявність ерозій (86,9 %) і виразок (88,3 %), вкритих гематином.

Таким чином, нейромережева модель підтверджує, що структурно-анатомічні характеристики є клю-
човими детермінантами для прогнозування груп ризику гастроезофагеальної патології, тоді як симптома-
тичні змінні мають допоміжне значення.

Висновки та перспективи. У результаті дослідження побудовано математичну модель на основі бага-
тошарового перцептрона (MLP), яка інтегрує клінічні, ендоскопічні та морфометричні параметри пацієнтів 
для прогнозування рівня ризику при встановленні лікувальних імплантаційних пристроїв у пацієнтів із пато-
логією шлунково-стравохідного з’єднання. Модель забезпечила високу точність класифікації: 99,8 % для 
тренувальної та 99,4 % для тестової вибірки, з мінімальним відсотком неправильних класифікацій (0,2 % та 
0,6 % відповідно) і ідеальною роздільною здатністю (AUC = 1). Це свідчить про ефективність застосування 
нейронних мереж у завданнях медичної стратифікації ризику.

Аналіз важливості вхідних змінних показав, що найбільший вплив на рівень ризику мають морфо-
метричні параметри – протяжність пролабування, показники висоти пролабування та діафрагмального зву-
ження. Висока інформативність також відзначена для ознак наявності ерозій і виразок слизової оболонки, 
вкритих гематином або фібрином. Клінічні симптоми (печія, регургітація) мають середній рівень внеску, тоді 
як локальні запальні зміни слизової та фактори способу життя (зокрема куріння) демонструють помірний 
вплив. Така структура предикторів узгоджується з патофізіологічними механізмами розвитку рефлюкс-езо-
фагіту та пролабування шлунка.

Отримані результати підтверджують доцільність використання MLP-моделей як допоміжного інстру-
менту в прийнятті клінічних рішень щодо планування імплантаційних процедур. Запропонований підхід 
дозволяє не лише автоматизувати процес оцінки ризику, а й створює основу для побудови інтелектуальних 
систем підтримки лікаря в ендоскопічній практиці.

Перспективними напрямами подальших досліджень є: розширення вибірки для підвищення узагаль-
нювальної здатності моделі; інтеграція часових і біосенсорних параметрів у навчальний набір; створення 
веб- або мобільного застосунку, який у реальному часі оцінюватиме ризик на основі введених показників 
пацієнта.

Таким чином, результати дослідження демонструють потенціал застосування методів машинного нав-
чання для підвищення точності та персоналізації клінічних рішень у гастроентерології, зокрема у відборі 
пацієнтів для імплантаційних методів лікування.
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